Advertisement

Journal of Chemical Crystallography

, Volume 44, Issue 7, pp 380–385 | Cite as

Breaking Down the Interdigitated Dimeric Structure of Calix[4]arenediphosphonic Acid: the Structures of the Complexes with Piroxicam and 9-Aminoacridine

  • Aleksander Shkurenko
  • Hassim Seriouna
  • Karim Kedim
  • Jean-Baptiste Gervès
  • Kinga Suwinska
  • Anthony W. Coleman
Original Paper

Abstract

The solid-state structures of the complexes of calix[4]arenediphosphonic acid with piroxicam and 9-aminoacridine are described, in both cases, the classical interdigitated dimer formed by calix[4]arenediphosphonic acid is no longer present. For the 9-aminoacridine complex, a π–π stacked dimer of 9-aminoacridine is surrounded by calix[4]arenediphosphonic acid molecules with dimethyl sulfoxide included in the calix arene cavity. In the case of the piroxicam complex the piroxicam molecule forms a true inclusion complex and the pyridinium ring projects out to hydrogen bond to an opposing calix[4]arenediphosphonic acid, thus spanning the bilayer.

Graphical Abstract

The structures of the complexes of calix[4]arenediphosphonic acid with piroxicam and 9-aminoacridine show a breakdown in the classical interdigated calix-arene dimer with formation of trus inclusion complexes and exo-complexation.

Keywords

Co-crystal Calix[4]arenediphosphonic acid Piroxicam 9-Aminoacridine Layer structure 

Supplementary material

10870_2014_526_MOESM1_ESM.doc (84 kb)
Supplementary material 1 (DOC 83 kb)

References

  1. 1.
    Steed JW, Atwood JL (2009) Supramolecular Chemistry, 2nd edn. John Wiley & Sons, ChichesterCrossRefGoogle Scholar
  2. 2.
    Danylyuk O, Suwinska K (2009) Solid-state interactions of calixarenes with biorelevant molecules. Chem Commun 39:5799–5813CrossRefGoogle Scholar
  3. 3.
    Dalgarno SJ, Thallapally PK, Barbour LJ, Atwood JL (2007) Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem Soc Rev 36:236–245CrossRefGoogle Scholar
  4. 4.
    Gutsche CD (2008) Calixarenes an Introduction, 2nd edn. RSC, CambridgeGoogle Scholar
  5. 5.
    Perret F, Lazar AN, Coleman AW (2006) Biochemistry of the para-sulphonato-calix[n]arenes. Chem Commun 23:2425–2438CrossRefGoogle Scholar
  6. 6.
    Perret F, Coleman AW (2011) Biochemistry of anionic calix[n]arenes. Chem Commun 47:7303–7319CrossRefGoogle Scholar
  7. 7.
    Nichols PJ, Makha M, Raston CL (2006) Confinement of nucleic acid bases and related compounds using tetra-p-sulphonatocalix[4]arene. Cryst Growth Des 6:1161–1167CrossRefGoogle Scholar
  8. 8.
    Atwood JL, Dalgarno SJ, Hardie MJ, Raston CL (2005) Selective single crystal complexation of l- or d-leucine by p-sulphonatocalix[6]arene. Chem Commun 3:337–339CrossRefGoogle Scholar
  9. 9.
    Lazar A, Da Silva E, Navaza A, Barbey C, Coleman AW (2004) A new packing motif for para-sulphonato-calix[4]arene: the solid state structure of the para-sulphonatocalix[4]arene d-arginine complex. Chem Commun 19:2162–2163CrossRefGoogle Scholar
  10. 10.
    Danylyuk O, Ghera BB, Lazar AN, Coleman AW, Suwinska K (2008) The solid-state structures of para-sulphonato-calix-[4]-arene with the biologically active oligoammmonium cations of norspermidine and triethyltetramine. J Mol Struct 891:443–449CrossRefGoogle Scholar
  11. 11.
    Danylyuk O, Monachino M, Lazar AN, Suwinska K, Coleman AW (2010) Conformational isomerism in the solid-state structures of tetracaine and tamoxifen with para-sulphonato-calix[4]arene. J Mol Struct 965:116–120CrossRefGoogle Scholar
  12. 12.
    Kalchenko VI, Lipkovskii Y, Simonov YA, Vysotskii MA, Suvinska K, Dvorkin AA, Pirozhenko VV, Tsymbal IF, Markovskii LN (1995) Stereochemistry of diphosphorylated calix[4]arenes. Zh Obschch Khim 65:1311–1320Google Scholar
  13. 13.
    Rather B, Moulton B, Zaworotko MJ, Perret F, Morel-Desrosiers N, Da Silva E, Coleman AW (2003) Crystal engineering of a calix-arene dimer embedded in a hydrophobic cavity formed by a diammonium host matrix. Cryst Eng 6:15–21CrossRefGoogle Scholar
  14. 14.
    Lazar AN, Danylyuk O, Suwinska K, Coleman AW (2006) The solid-state structure of calix[4]arene dihydroxyphosphonic acid–l-lysine complex. J Mol Struct 825:20–25CrossRefGoogle Scholar
  15. 15.
    Lazar AN, Navaza A, Coleman AW (2004) Solid-state caging of 1,10-phenanthroline π-π stacked dimers by calix[4]arene dihydroxyphosphonic acid. Chem Commun 9:1052–1053CrossRefGoogle Scholar
  16. 16.
    Coleman AW, Bott SG, Morley SD, Means CM, Robinson KD, Zhang H, Atwood JL (1988) Novel layer structure of sodium calix[4]arene sulphonate complexes: a class of organic clay mimics? Angew Chem Int Ed Engl 27:1361–1362CrossRefGoogle Scholar
  17. 17.
    Atwood JL, Coleman AW, Zhang H, Bott SG (1989) Organic clays. Synthesis and structure of Na5[calix[4]arene sulfonate]·12H2O, K5[calix[4]arene sulfonate]·8H2O, Rb5[calix[4]arene sulfonate]·5H2O, and Cs5[calix[4]arene sulfonate]·4H2O. J Inclusion Phenom Mol Recogn Chem 7:203–211CrossRefGoogle Scholar
  18. 18.
    Lazar AN, Danylyuk O, Suwinska K, Coleman AW (2007) The structure of the tetra-potasium salt of calix[4]arene dihydroxyphosphonic acid. Chem J Mold 2:98–101Google Scholar
  19. 19.
    Nonius COLLECT (1998), Nonius BV, Delft, The NetherlandsGoogle Scholar
  20. 20.
    Otwinowski Z, Minor W (1997) Methods in enzymology. In: Carter CW Jr, Sweet RM (eds) Macromolecular crystallography, part A. Academic Press, New York, pp 307–326CrossRefGoogle Scholar
  21. 21.
    Sheldrick G. M. SHELX-97 (1998) Programs for Crystal Structure Analysis (Release 97-2). Institüt für Anorganische Chemie der Universität, GöttingenGoogle Scholar
  22. 22.
    Allen FH, Motherwell WDS (2002) Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. Acta Crystallogr B58:407–422CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aleksander Shkurenko
    • 1
  • Hassim Seriouna
    • 2
  • Karim Kedim
    • 2
  • Jean-Baptiste Gervès
    • 2
  • Kinga Suwinska
    • 1
    • 3
  • Anthony W. Coleman
    • 2
  1. 1.Institute of Physical Chemistry, Polish Academy of SciencesWarsawPoland
  2. 2.LMI, Université Lyon 1 CNRS UMR 5615VilleurbanneFrance
  3. 3.Faculty of Biology and Environmental SciencesCardinal Stefan Wyszynski UniversityWarsawPoland

Personalised recommendations