Syntheses, Crystal Structures and Electrochemical Activities of Co(II) and Cu(II)-Complexes with 5-Aminosalicylate Derivatives
- 306 Downloads
- 2 Citations
Abstract
Reaction of 5-aminosalicylic acid with 2-pyridinecarboxaldehyde or sodium chloroacetate gave two new ligands 5-((pyridin-2-yl)methyleneamino)-2-hydroxybenzoic acid (HL1) and 5-(bis(carboxymethyl)amino)-2-hydroxybenzoic acid (H2L2), respectively. Two compounds [Co(L1)2(H2O)2]·2H2O (1) and [Cu2(L2)2(phen)2] (2) (phen = 1,10-phenanthroline) were synthesized and characterized by IR, PXRD, TGA and cyclic voltammetry. Single crystal X-ray diffraction analysis reveals that complex 1 is a mononuclear structure and the metal center is coordinated in an octahedral geometry. Complex 2 is a dinuclear structure, in which the Cu atom is in a square pyramidal geometry.
Graphical Abstract
Keywords
Crystal structures Electrochemical activities Aminosalicylate derivativesNotes
Acknowledgments
This work was financially supported by the NSFC (20971075, 61078055), the Natural Science Foundation of Zhejiang province (LY12B01005), the State Key Laboratory of Structural Chemistry (20110010), Fujian Institute of Research on the Structure of Matter, CAS and sponsored K. C. Wong Magna Fund in Ningbo University.
References
- 1.Rao CNR, Natarajan S, Vaidhyanathan R (2004) Angew Chem Int Ed 43:1466–1496CrossRefGoogle Scholar
- 2.Huang XC, Lin YY, Zhang JP, Chen XM (2006) Angew Chem 118:1587–1589CrossRefGoogle Scholar
- 3.Dybtsev DN, Chun H, Yoon SH, Kim D, Kim K (2004) J Am Chem Soc 126:32–33CrossRefGoogle Scholar
- 4.Rasmussen SN, Bondesen S, Hvidberg EF, Hansen SH, Binder V, Halskov S, Flachs H (1982) Gastroenterology 83(5):1062–1070Google Scholar
- 5.Sutherland LR, Martin F, Greer S, Robinson M, Greenberger N, Saibil F, Martin T, Sparr J, Prokipchuk E, Borgen L (1987) Gastroenterology 92(6):1894–1898Google Scholar
- 6.Cui FL, Fan J, Li W, Fan YC, Hub ZD (2004) J Pharm Biomed Anal 34:189–197CrossRefGoogle Scholar
- 7.Deloménie C, Fouix S, Longuemaux S, Brahimi N, Bizet C, Picard B, Denamur E, Dupret JM (2001) J Bacteriol 183:3417–3427CrossRefGoogle Scholar
- 8.Nielsen OH, Verspaget HW, Elmgreen J (1988) Aliment Pharmacol Ther 2:203–211CrossRefGoogle Scholar
- 9.Bandyopadhyay S, Das A, Mukherjee GN, Cantoni A, Bocelli G, Chaudhuri S, Ribas J (2004) Polyhedron 23:1081–1088CrossRefGoogle Scholar
- 10.Yong GP, Wang ZY, Cui Y (2004) Eur J Inorg Chem 21:4317–4323CrossRefGoogle Scholar
- 11.Xu YQ, Chen BQ, Gong YQ, Yuan DQ, Jiang FL, Hong MC (2006) J Mol Struct 789:220–224CrossRefGoogle Scholar
- 12.Xu YQ, Yuan DQ, Wu BL, Han L, Wu MY, Jiang FL, Hong MC (2006) Cryst Growth Des 6:1168–1174CrossRefGoogle Scholar
- 13.Yong GP, Qiao S, Wang ZY, Cui Y (2005) Inorg Chim Acta 358:3905–3913CrossRefGoogle Scholar
- 14.Chu Q, Liu GX, Okamura TA, Huang YQ, Sun WY, Ueyama N (2008) Polyhedron 27:812–820CrossRefGoogle Scholar
- 15.Yong GP, Wang ZY, Chen JT (2004) J Mol Struct 707:223–229CrossRefGoogle Scholar
- 16.Sheldrick GM (1997) SHELXS97, a program for crystal structure solution. University of Göttingen, GermanyGoogle Scholar
- 17.Sheldrick GM (1997) SHELXTL97, a program for crystal structure refinement. University of Göttingen, GermanyGoogle Scholar
- 18.Li H, Eddaoudi M, Groy TL, Yaghi OM (1998) J Am Chem Soc 120:8571–8572CrossRefGoogle Scholar
- 19.Wu CD, Lin WB (2007) Angew Chem 119:1093–1096CrossRefGoogle Scholar
- 20.Dickinson VE, Williams ME, Hendrickson SM, Masui H, Murray RW (1999) J Am Chem Soc 121:613–616CrossRefGoogle Scholar
- 21.Zhao XY, Liang DD, Liu SX, Sun CY, Cao RG, Gao CY, Ren YH, Su ZM (2008) Inorg Chem 47:7133–7138CrossRefGoogle Scholar
- 22.Wayu MB, Spidle RT, Devkota T, Deb AK, Delong RK, Ghosh KC, Wanekaya AK, Chusuei CC (2013) Electrochim Acta 97:99–104CrossRefGoogle Scholar
- 23.Zhuang RR, Jian FF, Wang KF (2009) J Mol Struct 938:254–258CrossRefGoogle Scholar
- 24.Zhang GH, Yang NB, Ni YL, Shen J, Zhao WB, Huang XH (2011) Sens Actuators B 158:130–137CrossRefGoogle Scholar