Advertisement

Journal of Chemical Crystallography

, Volume 43, Issue 10, pp 554–560 | Cite as

Co-crystals of 9-(2-Methoxyphenyl)-9H-xanthen-9-ol with Caffeine and Theophylline

  • Ayesha Jacobs
  • Francoise M. Amombo Noa
  • Jana H. Taljaard
Original Paper

Abstract

The host compound 9-(2-methoxyphenyl)-9H-xanthen-9-ol (H) forms a 2:1 co-crystal with caffeine (2H·CAF). The structure was solved successfully in the triclinic space group P-1 with unit cell dimensions: a = 9.1747(8) Å, b = 13.7910(12) Å, c = 16.7207(14) Å, α = 107.036(2)°, β = 99.213(2)° and γ = 95.812(2)°. The structure of the apohost was also solved in P-1 with unit cell dimensions: a = 11.402(2) Å, b = 11.993(2) Å, c = 12.994(3) Å, α = 64.96(3)°, β = 73.29(3)° and γ = 74.89(3)°. The co-crystal hydrate of H with theophylline, 2H·THEO·½H 2 O, crystallised in the space group P21/c, unit cell dimensions: a = 13.8121(12) Å, b = 14.7391(13) Å, c = 20.4630(18) Å, β = 106.759(2)°.

Graphical Abstract

A co-crystal of 9-(2-methoxyphenyl)-9H-xanthen-9-ol and caffeine (2H·CAF) is stabilized by hydrogen bonding to the imidazole nitrogen and the amide oxygen of caffeine.

Keywords

Caffeine Theophylline Xanthenol host Co-crystal 

Notes

Acknowledgments

We thank the Cape Peninsula University of Technology and the National Research Foundation (Pretoria) for funding.

References

  1. 1.
    Csöregh I, Weber E, Nassimbeni LR, Gallardo O, Dorpinghaus N, Ertan A, Bourne SA (1993) J Chem Soc Perkin Trans 2:1775–1782Google Scholar
  2. 2.
    Jacobs A, Makgosi SM, Nassimbeni LR, Taljaard JH (2009) J Chem Crystallogr 39:163–168CrossRefGoogle Scholar
  3. 3.
    Faleni N, Jacobs A, Taljaard JH (2009) J Chem Crystallogr 39:285–292CrossRefGoogle Scholar
  4. 4.
    Jacobs A, Nassimbeni LR, Su H, Taljaard B (2005) Org Biol Chem 3:1319–1322CrossRefGoogle Scholar
  5. 5.
    Curtis E, Nassimbeni LR, Su H, Taljaard JH (2006) Cryst Growth Des 6:2716–2719CrossRefGoogle Scholar
  6. 6.
    Jacobs A, Faleni N, Nassimbeni LR, Taljaard JH (2007) Cryst Growth Des 7:1003–1006CrossRefGoogle Scholar
  7. 7.
    Jacobs A, Nassimbeni LR, Nohako KL, Ramon G, Taljaard JH (2009) New J Chem 33:960–964CrossRefGoogle Scholar
  8. 8.
    Giri R, Goodell JR, Xing C, Benoit A, Kaur H, Hiasa H, Ferguson DM (2010) Bioorg Med Chem 18:1456–1463CrossRefGoogle Scholar
  9. 9.
    Goodell JR, Puig-Basagoiti F, Forshey BM, Shi P-Y, Ferguson DM (2006) J Med Chem 49:2127–2137Google Scholar
  10. 10.
    Trumbull KA, Branchaud BP (2005) Biorg Med Chem Lett 15:5544–5547CrossRefGoogle Scholar
  11. 11.
    Brittain HG (2012) Cryst Growth Des 12:1046–1054CrossRefGoogle Scholar
  12. 12.
    Bucar D-K, Henry RF, Lou X, Duerst RW, MacGillivray LR, Zhang GG (2009) Cryst Growth Des 9:1932–1943CrossRefGoogle Scholar
  13. 13.
    Bucar D-K, Henry RF, Lou X, Duerst RW, Borchardt TB, MacGillivray LR, Zhang GG (2007) Mol Pharm 4:339–346CrossRefGoogle Scholar
  14. 14.
    Jacobs A, Nassimbeni LR, Nohako KL, Ramon G, Sebogisi (2011) J Chem Crystallogr 41:610–616CrossRefGoogle Scholar
  15. 15.
    Aitipamula S, Shan Chow P, Tan RBH (2012) CrystEngComm 14:2381–2385CrossRefGoogle Scholar
  16. 16.
    Leyssens T, Springuel G, Montis R, Candoni N, Veesler S (2012) Cryst Growth Des 12:1520–1530CrossRefGoogle Scholar
  17. 17.
    Friščić T, Fabian L, Burley JC, Reid DG, Duer MJ, Jones W (2008) Chem Comm 1644–1646Google Scholar
  18. 18.
    Trask AV, Sam Motherwell WD, Jones W (2006) Int J Pharm 320:114–123Google Scholar
  19. 19.
    Das B, Baruah JB (2011) Cryst Growth Des 11:278–286CrossRefGoogle Scholar
  20. 20.
    Friščić T, Fabian L, Burley JC, Jones W, Sam Motherwell WD (2006) Chem Comm 5009–5011Google Scholar
  21. 21.
    Schultheiss N, Roe M, Boerrigter SXM (2011) CrystEngComm 13:611–619CrossRefGoogle Scholar
  22. 22.
    Cardin C, Gan Y, Lewis T (2007) Acta Crystallogr E63:o3175Google Scholar
  23. 23.
    Zhang S, Rasmuson AC (2012) CrystEngComm 14:4644–4655CrossRefGoogle Scholar
  24. 24.
    Heiden S, Tröbs L, Wenzel K-J, Emmerling F (2012) CrystEngComm 14:5128–5129CrossRefGoogle Scholar
  25. 25.
    CSD (2011) Version 5.33, Nov 2011Google Scholar
  26. 26.
    Dilthey W, Quint F, Heinen J (1939) J Prakt Chem 152:49–98CrossRefGoogle Scholar
  27. 27.
    COLLECT (1998) data collection software. Nonius, Delft, The NetherlandsGoogle Scholar
  28. 28.
    APEX 2 (2005) Version 1.0-27 Bruker AXS Inc, Madison, Wisconsin, USAGoogle Scholar
  29. 29.
    SAINT-Plus (2004) Version 7.12, Bruker AXS Inc., Madison, Wisconsin, USAGoogle Scholar
  30. 30.
    Otwinowski Z, Minor W (1997) In: Carter W Jr., Sweet RM (eds) Methods in enzymology, macromolecular crystallography, part A, vol 276. Academic Press, New York, p 307Google Scholar
  31. 31.
    SAINT-Plus (2004) Version 7.12, Bruker AXS Inc., Madison, Wisconsin, USAGoogle Scholar
  32. 32.
    Sheldrick GM (1997) SHELX-97, program for crystal structure refinement; University of Göttingen, GermanyGoogle Scholar
  33. 33.
    Barbour LJ (2001) X-Seed, a software tool for supramolecular crystallography. J Supramol Chem 1:189–191Google Scholar
  34. 34.
    Olovsson I, Jönsson P (1975) In: Schuster P, Zundel G, Sardify C (eds) The hydrogen bond-structure and spectroscopy. North Holland Publishing Company, New YorkGoogle Scholar
  35. 35.
    Etter MC, MacDonald JC, Bernstein J (1990) Acta Crystallogr B46:256–262Google Scholar
  36. 36.
    Yvon K, Jeitschko W, Parthé E (1977) LAZYPULVERIX, a computer program for calculating X-ray and neutron diffraction powder patterns. J Appl Crystallogr 10:73–74CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ayesha Jacobs
    • 1
  • Francoise M. Amombo Noa
    • 1
  • Jana H. Taljaard
    • 2
  1. 1.Department of ChemistryCape Peninsula University of TechnologyCape TownSouth Africa
  2. 2.Sasol Technologies R&DSasolburgSouth Africa

Personalised recommendations