Journal of Chemical Crystallography

, Volume 43, Issue 9, pp 493–501 | Cite as

Co-crystals of 2,3-Dimethylquinoxaline (DMQ) and Dimethylglyoxime (DMG) in 1:1 and 1:2 Ratios and Hirshfeld Surface Analysis

  • Susobhan Biswas
  • Rajat Saha
  • Ian M. Steele
  • Sanjay Kumar
  • Kamalendu Dey
Original Paper


Two co-crystals of 2,3-dimethylquinoxaline (DMQ) and dimethylglyoxime (DMG) have been synthesized and characterized by single crystallographic X-ray, IR and thermal studies. Co-crystal I is colorless while co-crystal II is orange in color. In the co-crystals, both hydrogen-bonding and π··· interactions assemble both DMQ and DMG within the crystal structure. For co-crystal I, 2D supramolecular sheet structure is formed by utilizing both hydrogen bonding and π··· interactions, while for co-crystal II supramolecular 1D chain motifs are formed by O–H···N hydrogen bonding interactions which are held together by C–H···O interactions to form 2D supramolecular network. These 2D supramolecular networks are further stacked by π···π and C–H···π interactions of aromatic rings of DMQ leading to the formation of 3D supramolecular structure. Examination of the intermolecular interactions and crystal packing via Hirshfeld surface analysis reveals that most of the close contacts are associated with weak interactions. The fingerprint plots indicate that these weak interactions have significant role in crystal packing. Thermogravimetric analyses of the co-crystals have been carried out.

Graphical Abstract

Two concomitant co-crystals of active pharmaceutical ingredients (API) 2,3-dimethylquinaxoline (DMQ) and co-crystallizing agent dimethylglyoxime (DMG) have been synthesized and characterized by X-ray crystal structure, IR analysis along with their detailed Hirshfeld surfaces analyses.


Concomitant co-crystals API and CA Supramolecular interactions Surface analysis 



R. S. acknowledges financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi under the SRF program (09/096(0565)2008-EMR-I).

Supplementary material

10870_2013_449_MOESM1_ESM.doc (1.9 mb)
Supplementary material 1 (DOC 1946 kb)


  1. 1.
    Lehn JM (2002) Science 295:2400–2403CrossRefGoogle Scholar
  2. 2.
    Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, New YorkCrossRefGoogle Scholar
  3. 3.
    Atwood JL, Davies JED, MacNicol DD, Vögtle F, Lehn JM (1996) Comprehensive supramolecular chemistry. Pergamon, OxfordGoogle Scholar
  4. 4.
    Desiraju GR (1989) Crystal engineering. The design of organic solids. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Desiraju GR (1996) In: Atwood JL, Davies JED, MacNicol DD, Vögtle F (eds) Comprehensive supramolecular chemistry, vol 6. Pergamon, Oxford, pp 1–22Google Scholar
  6. 6.
    Calhorda MJ (2000) Chem Commun 801–809Google Scholar
  7. 7.
    Braga D, Grepioni F (1998) New J Chem 22:1159–1161CrossRefGoogle Scholar
  8. 8.
    Nishio M (1998) The CH···O interaction, 1st edn. Wiley-VCH, New YorkGoogle Scholar
  9. 9.
    Jeffrey GA, Saenger W (1994) Hydrogen bonding in biological structures, 2nd edn. Springer, BerlinGoogle Scholar
  10. 10.
    Batten SR, Robson R (1998) Angew Chem Int Ed 37:1460–1494CrossRefGoogle Scholar
  11. 11.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Nature 423:705–714CrossRefGoogle Scholar
  12. 12.
    Janiak C (2003) Dalton Trans 2781–2804Google Scholar
  13. 13.
    Brammer L (2004) Chem Soc Rev 33:476–489CrossRefGoogle Scholar
  14. 14.
    Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Acc Chem Res 38:176–182CrossRefGoogle Scholar
  15. 15.
    Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 43:2334–2375CrossRefGoogle Scholar
  16. 16.
    Bradshaw D, Claridge JB, Cussen EJ, Prior TJ, Rosseinsky MJ (2005) Acc Chem Res 38:273–282CrossRefGoogle Scholar
  17. 17.
    Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Desiraju GR (2001) Nature 412:397–400CrossRefGoogle Scholar
  19. 19.
    Aakeröy CB, Salmon DJ (2005) CrystEngComm 7:439–448CrossRefGoogle Scholar
  20. 20.
    Bis JA, Zaworotko MJ (2005) Cryst Growth Des 5:1169–1179CrossRefGoogle Scholar
  21. 21.
    Aakeröy CB, Desper J, Urbina JF (2005) Chem Commun 22:2820–2822CrossRefGoogle Scholar
  22. 22.
    Perumalla SR, Suresh E, Pedireddi VR (2005) Angew Chem Int Ed 44:7752–7757CrossRefGoogle Scholar
  23. 23.
    Sarma JARP, Desiraju GR (1985) J Chem Soc Perkin Trans 2:1905–1912Google Scholar
  24. 24.
    Mukherjee A, Desiraju GR (2011) Chem Commun 47:4090–4092CrossRefGoogle Scholar
  25. 25.
    Almarsson Ö, Zaworotko MJ (2004) Chem Commun 17:1889–1896CrossRefGoogle Scholar
  26. 26.
    Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1199–1208CrossRefGoogle Scholar
  27. 27.
    Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1247–1254CrossRefGoogle Scholar
  28. 28.
    Du M, Zhang ZH, Zhao XJ (2006) Cryst Growth Des 6:390–396CrossRefGoogle Scholar
  29. 29.
    Du M, Zhang ZH, Zhao XJ, Cai H (2006) Cryst Growth Des 6:114–121CrossRefGoogle Scholar
  30. 30.
    Etter MC (1990) Acc Chem Res 23:120–126CrossRefGoogle Scholar
  31. 31.
    Reyes-Arellano A, Boese R, Steller I, Sustmann R (1995) Struct Chem 6:391–396CrossRefGoogle Scholar
  32. 32.
    Smolka T, Schaller T, Sustmann R, Blaser D, Boese R (2000) J Prakt Chem 342:465–471CrossRefGoogle Scholar
  33. 33.
    Olenik B, Smolka T, Boese R, Sustmann R (2003) Crystal Growth Des 3(2):183–188CrossRefGoogle Scholar
  34. 34.
    Marsman AW, Leussing ED, Zwkker JW, Jenneskens LW (1999) Chem Mater 11:1484–1491CrossRefGoogle Scholar
  35. 35.
    Radhakrishnan T, Nair PS, Kolawole GA, Ravaprasadu N, Hawkes GE, Motevalli M, Bento ES, O’Brien P (2007) Mag Reson Chem 45:59–64CrossRefGoogle Scholar
  36. 36.
    Hökelek T, Bati H, Bekdemir Y, Kütük H (2001) Acta Cryst E57:663–665Google Scholar
  37. 37.
    Sheldrick GM (1997) SHELXS 97, program for structure solution, University of Göttingen, GermanyGoogle Scholar
  38. 38.
    Sheldrick GM (1997) SHELXL 97, program for crystal structure refinement, University of Göttingen, GermanyGoogle Scholar
  39. 39.
    Spek AL (2003) PLATON, molecular geometry program. J Appl Crystallogr 36:7CrossRefGoogle Scholar
  40. 40.
    Farrugia LJ (1997) J Appl Crystallogr 30:565CrossRefGoogle Scholar
  41. 41.
    Farrugia LJ (1999) J Appl Crystallogr 32:837CrossRefGoogle Scholar
  42. 42.
    Wolff SK, Grimwood DJ, McKinnon JJ, Jayatilaka D, Spackman A (2007) Crystal Explorer 2.0, University of Western Australia, Perth, AustraliaGoogle Scholar
  43. 43.
    Imai K, Takahashi MT, Ishii R, Kobayashi K (2011) X-ray Struct Anal Online 27:75–76CrossRefGoogle Scholar
  44. 44.
    Spackman MA, Byrom PG (1997) ChemPhys Lett 267:215–220Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Susobhan Biswas
    • 1
  • Rajat Saha
    • 1
  • Ian M. Steele
    • 2
  • Sanjay Kumar
    • 1
  • Kamalendu Dey
    • 3
  1. 1.Department of PhysicsJadavpur UniversityKolkataIndia
  2. 2.Department of Geophysical SciencesThe University of ChicagoChicagoUSA
  3. 3.Department of ChemistryUniversity of KalyaniKalyaniIndia

Personalised recommendations