Journal of Chemical Crystallography

, Volume 43, Issue 10, pp 509–516 | Cite as

A Comparison of the Self Assembled Frameworks of Three Cobalt(II) Coordination Compounds Bearing Dipicolinic Acid and Chelidamic Acid Ligands

  • Varma H. Rambaran
  • Travis R. Erves
  • Kristy Grover
  • Shawna Balof
  • LaMaryet V. Moody
  • Stuart E. Ramsdale
  • Luke A. Seymour
  • Don VanDerveer
  • Donald M. Cropek
  • Ralph T. Weber
  • Alvin A. Holder
Original Paper


A comparison of the self assembled lattice structures of unpublished coordination compound, [Co(dipic-OH)(OH2)3]·1.5H2O (I) (where dipic-OH = 4-hydroxypyridine-2,6-dicarboxylate anion) and two novel cobalt(II)-containing coordination compounds, [Co(dipic)(pyz)(OH2)]·0.25DMSO (II) (where dipic = dipicolinate anion and pyz = 2-(H-pyrazol-3-yl)-pyridine) and [Co(dipic-OH)(pyz)(OH2)]·H2O (III), have revealed remarkable distinctions in the hierarchy of their respective structures. The three dimensional (3-D) layered scaffold of compound I and the “zigzag” motifs of compounds II and III were found to have been created via unique hydrogen bonding patterns. Interestingly, compound III displayed a secondary 3-D channel framework, which was made possible by π–π stacking interactions. Spectroscopic studies yielded results that were consistent with the predicted behaviors of the various species of substituted ligands. X-ray crystallography revealed that compound I crystallized in the monoclinic space group C2/c with a = 14.734(3) Å, b = 6.8664(14) Å, c = 22.411(5) Å, α = 90°, β = 90.097(7)°, γ = 90°, V = 2267.4(8) Å3, Z = 8; compound II crystallized in the monoclinic space group P21/n with a = 11.621(3) Å, b = 12.391(3) Å, c = 12.537(4) Å, α = 90°, β = 102.148(11)°, γ = 90°, V = 1764.8(8) Å3, Z = 4; and compound III crystallized in the orthorhombic space group Pccn with a = 21.899(2) Å, b = 10.8845(11) Å, c = 15.7093(13) Å, α = 90°, β = 90°, γ = 90°, V = 3744.4(6) Å3, Z = 8.

Graphical Abstract

A rare three-dimensional channel motif with two different pore sizes (Figure 1) has been detected in a comparison of the self-assembled lattice structures of three cobalt(II) coordination compounds bearing dipicolinic acid and chelidamic acid ligands.
Figure 1

Views of the reported 3-D channel motif when viewed across (a) the “a-o-b” axis; (b) the “c” axis


Cobalt complexes 2-(H-Pyrazol-3-yl)-pyridine Dipicolinic acid Chelidamic acid π–π Stacking Hydrogen bonding 



This research was supported in part by an appointment to the Student Research Participation Program at the U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory, administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and ERDC-CERL. This work was also supported by the Center Directed Research Program at the U.S. Army Corps of Engineers. This work was also supported by the Mississippi INBRE funded by an IDeA award from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103476.


  1. 1.
    Anagnostopoulos AJ (1975) Coord Chem 4:231–234CrossRefGoogle Scholar
  2. 2.
    Cassellato U, Vigato PA (1978) Coord Chem Rev 26:85–159CrossRefGoogle Scholar
  3. 3.
    Kondo M, Sugahara S, Nakamura Y, Miyazawa M, Yasue S, Maeda K, Uchida F, Sakane G, Kawaguchi H (2008) Cryst Eng Comm 10:1516–1519CrossRefGoogle Scholar
  4. 4.
    Das B, Ghosh K, Baruah JBJ (2011) Coord Chem 64(4):583–589CrossRefGoogle Scholar
  5. 5.
    Payne VCR, Headley O, Stribrany RT, Maragh PT, Dasgupta TP, Newton AM, Holder AA (2007) J Chem Cryst 37:309CrossRefGoogle Scholar
  6. 6.
    Mathew A, Blake AJ, Champness NR, Cooke PA, Hubberstey P, Schroder M (1999) New J Chem 23:573–575CrossRefGoogle Scholar
  7. 7.
    Cui SX, Zhao YL, Li B, Zhang JP, Zhang QLY (2008) Polyhedron 27:671–678CrossRefGoogle Scholar
  8. 8.
    Gonzales-Baro AC, Pis-Diez R, Piro OE, Parajon-Costa BS (2008) Polyhedron 27:502–512CrossRefGoogle Scholar
  9. 9.
    Ramdevi P, Kumaresan S, Sharma N (2006) Acta Crystallogr E62:m2957–m2959Google Scholar
  10. 10.
    Harrison WTA, Ramadevi P, Kumaresan S (2006) Acta Crystallogr E62:m513–m515Google Scholar
  11. 11.
    Safaei-Ghomi J, Aghabozorg H, Motyeian E, Ghadermazi M (2009) Acta Crystallogr E65:m2–m3Google Scholar
  12. 12.
    Hu ML, Xiao HP, Yuan JX (2004) Acta Crystallogr C60:m112–m113Google Scholar
  13. 13.
    Chatterjee M, Ghosh S, Wu BM, Mak TCW (1998) Polyhedron 17(8):1369–1374CrossRefGoogle Scholar
  14. 14.
    Du M, Cai H, Zhao XJ (2006) Inorg Chem Act 359:673–679CrossRefGoogle Scholar
  15. 15.
    Zhao XQ, Zhao B, Ma Y, Shi W, Cheng P, Jiang ZH, Liao DZ, Yan SP (2007) Inorg Chem 46:5832–5834CrossRefGoogle Scholar
  16. 16.
    Felloni M, Blake AJ, Hubberstey P, Teat SJ, Wilson C, Schroder M (2010) Cryst Eng Comm 12:1576–1589CrossRefGoogle Scholar
  17. 17.
    Gao HL, Yi L, Zhao B, Cheng P, Liao DZ, Yan SP (2006) Inorg Chem 45:5980–5988CrossRefGoogle Scholar
  18. 18.
    Furst W, Gouzerh P, Jeanin YJ (1979) Coord Chem 8:237–243CrossRefGoogle Scholar
  19. 19.
    Das B, Baruah JB (2011) Polyhedron 30:22–26CrossRefGoogle Scholar
  20. 20.
    Crans DC, Rithner CD, Baruah JB, Gourley BL, Levinger NE (2006) J Am Chem Soc 128:4437–4445CrossRefGoogle Scholar
  21. 21.
    Crans DC, Tahir MM, Johnson MD, Wilkins PC, Yang L, Robbins K, Johnson A, Alfano JA, Godzala ME, Austin LTIII, Willsky GR (2003) Inorg Chem Act 356:365–378CrossRefGoogle Scholar
  22. 22.
    Crans DC, Yang L, Jakusch T, Kiss T (2000) Inorg Chem 39:4409–4416CrossRefGoogle Scholar
  23. 23.
    Yang L, Crans DC, Miller SM, La Cour A, Anderson OP, Kaszynski PM, Godzala ME, Austin LD, Willsky GR (2002) Inorg Chem 41:4859–4871CrossRefGoogle Scholar
  24. 24.
    Zhou GW, Guo GC, Liu B, Wang MS, Cai LZ, Huang JS (2004) Bull Korean Chem Soc 25(5):676–680CrossRefGoogle Scholar
  25. 25.
    Cui JZ, Zhang H, Lin T, Kang HJ, Gao HL (2006) Acta Crystallogr E62:m2499–m2501Google Scholar
  26. 26.
    Devereux M, McCann M, Leon V, McKee V, Ball RJ (2002) Polyhedron 21:1063–1071CrossRefGoogle Scholar
  27. 27.
    Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629–1658CrossRefGoogle Scholar
  28. 28.
    Ye BH, Tong ML, Chen XM (2005) Coord Chem Rev 249:545–565CrossRefGoogle Scholar
  29. 29.
    Molecular Structure Corporation & Rigaku (2006) CrystalClear. MSC, The WoodlandsGoogle Scholar
  30. 30.
    Jacobson R (1998) REQAB Version 1.1. Molecular Structure Corporation. Texas, The WoodlandsGoogle Scholar
  31. 31.
    Sheldrick GM (2008) A SHELXTL Version 6.10. Acta Crystallogr 64:112–122Google Scholar
  32. 32.
    Van der Sluis P, Spek AL (1990) SQUEEZE. Acta Crystallogr A46:194Google Scholar
  33. 33.
    Makinen MW, Kuo LC, Yim MB, Wells GB, Fukuyama JM, Kim JEJ (1985) Am Chem Soc 107:5245CrossRefGoogle Scholar
  34. 34.
    Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry, 4th edn. John Wiley and Sons, Inc., New York, pp 772–775Google Scholar
  35. 35.
    Su H, Wen Y-H, Feng YLZ (2005) Kristallogr NCS 220:560–562Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Varma H. Rambaran
    • 1
  • Travis R. Erves
    • 2
  • Kristy Grover
    • 2
  • Shawna Balof
    • 2
  • LaMaryet V. Moody
    • 2
  • Stuart E. Ramsdale
    • 2
  • Luke A. Seymour
    • 2
  • Don VanDerveer
    • 3
  • Donald M. Cropek
    • 4
  • Ralph T. Weber
    • 5
  • Alvin A. Holder
    • 2
    • 6
  1. 1.The University of Trinidad and TobagoArimaTrinidad and Tobago
  2. 2.Department of Chemistry and BiochemistryThe University of Southern MississippiHattiesburgUSA
  3. 3.Chemistry DepartmentClemson UniversityClemsonUSA
  4. 4.U.S. Army Corps of EngineersConstruction Engineering Research LaboratoryChampaignUSA
  5. 5.EPR Division Bruker BioSpinBillericaUSA
  6. 6.Department of Chemistry and BiochemistryOld Dominion UniversityNorfolkUSA

Personalised recommendations