Journal of Chemical Crystallography

, Volume 43, Issue 6, pp 285–291 | Cite as

The Role of Solvent in Hydrogen Bonding Pattern of Ellagic Acid Crystals

  • Ewa Żesławska
  • Agnieszka Skórska-Stania
Original Paper


To study the solvatomorphism in ellagic acid two crystal structures have been determined with the use of X-ray diffraction method. The obtained single crystals of dimethyl sulfoxide solvate and of dimethylformamide solvate belong to \( {P}\bar{1} \) and to P21/c space groups, respectively. In both structures, the inversion centre is located in the centre of the molecule of ellagic acid, so the asymmetric units contain only half of this molecule and one molecule of the corresponding solvent. The packing of the ellagic acid molecules in the crystals of these two solvatomorphs is dominantly controlled by the molecules of solvents, which form different hydrogen bonding patterns. The molecules of ellagic acid are planar and connected by hydrogen bonds via molecules of solvent, giving the rise to chains throughout the crystal. This work has concentrated on the strong O–H···O hydrogen bonds and weak C–H···O interactions.

Graphical Abstract

To study the solvatomorphism in ellagic acid and its influence on intermolecular hydrogen bonding, two crystal structures have been determined using small molecule, single crystal with X-ray diffraction.
Intermolecular hydrogen bonding for EA_DMSO show ring R 4 2 (14), whereas for EA_DMF, R 8 4 (36). Dashed lines indicate hydrogen bonds.


Solvate Pseudopolymorph Ellagic acid X-ray crystal structure 



The authors thank Prof. Barbara Oleksyn for fruitful discussions, Dr. Justyna Kalinowska-Tłuścik for the assistance with X-ray diffraction measurement. The research was carried out with the equipment purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-12-023/08).


  1. 1.
    Vattem DA, Shetty K (2005) J Food Biochem 29:234–266CrossRefGoogle Scholar
  2. 2.
    Han DH, Lee MJ, Kim JH (2006) Anticancer Res 26:3601–3606Google Scholar
  3. 3.
    Uzar E, Alp H, Cevik MU, Fırat U, Evliyaoglu O, Tufek A, Altun Y (2012) Neurol Sci 33:567–574CrossRefGoogle Scholar
  4. 4.
    Adams LS, Zhang Y, Seeram NP, Heber D, Chen S (2010) Cancer Prev Res 3(1):108–113CrossRefGoogle Scholar
  5. 5.
    Wang N, Wang Z-Y, Sui-Lin Mo, Loo TY, Wang D-M, Luo H-B, Yang D-P, Chen Y-L, Shen J-G, Chen J-P (2012) Breast Cancer Res Treat 134(3):943–955CrossRefGoogle Scholar
  6. 6.
    Akiyama H, Fujii K, Yamasaki O, Oono T, Iwatsuki KJ (2001) Antimicrob Chemother 48(4):487–491CrossRefGoogle Scholar
  7. 7.
    Njomnang Soh P, Witkowski B, Olagnier D, Nicolau M-L, Garcia-Alvarez M-C, Benoit-Vical F (2009) Antimicrob Agents Chemother 53:1100–1106CrossRefGoogle Scholar
  8. 8.
    Brittain HG (2012) J Pharm Sci 101(2):464–484CrossRefGoogle Scholar
  9. 9.
    McL. Mathieson A, Poppleton BJ ((1968)) Acta Cryst B 24:145–1461CrossRefGoogle Scholar
  10. 10.
    Kavuru P, Aboarayes D, Arora KK, Clarke HD, Kennedy A, Marshall L, Ong TT, Perman J, Pujari T, Wojtas Ł, Zaworotko MJ (2010) Cryst Growth Des 10(8):3568–3584CrossRefGoogle Scholar
  11. 11.
    Clarke HD, Arora KK, Bass H, Kavuru P, Ong T, Pujari T, Wojtas Ł, Zaworotko MJ (2010) Cryst Growth Des 10(5):2152–2167CrossRefGoogle Scholar
  12. 12.
    Rossi M, Erlebacher J, Zacharias DE, Carrell HL, Iannucci B (1991) Carcinogenesis 12(12):2227–2232CrossRefGoogle Scholar
  13. 13.
    Hasegawa M, Terauchi M, Kikuchi Y, Nakao A, Okubo J, Yoshinaga T, Hiratsuka H, Kobayashi M, Hoshi T (2003) Monatsh Chem 134:811–821CrossRefGoogle Scholar
  14. 14.
    Allen FH (2002) Acta Crystallogr B 58:380–388CrossRefGoogle Scholar
  15. 15.
    Sheldrick GM (2008) Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  16. 16.
    Farrugia LJ (1997) J Appl Crystallogr 30:565CrossRefGoogle Scholar
  17. 17.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Crystallogr 39:453–457CrossRefGoogle Scholar
  18. 18.
    Etter MC, MacDonald JC, Bernstein J (1990) Acta Crystallogr B 46:256–262CrossRefGoogle Scholar
  19. 19.
    Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555–1573CrossRefGoogle Scholar
  20. 20.
    Spek AL (2009) Acta Crystallogr D 65:148–155CrossRefGoogle Scholar
  21. 21.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, LondonGoogle Scholar
  22. 22.
    Steiner T (1997) Chem Commun: 727Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ChemistryPedagogical UniversityKrakówPoland
  2. 2.Faculty of ChemistryJagiellonian UniversityKrakówPoland

Personalised recommendations