Advertisement

Journal of Chemical Crystallography

, Volume 43, Issue 1, pp 1–5 | Cite as

Synthesis and Characterization of a New Bi-Supported Dawson-Like Heteropolytungstate

  • Zhangang Han
  • Qinghua Hao
  • Zhaohui Wang
  • Xueliang Zhai
Original Paper

Abstract

A new bi-supported Dawson-like heteropolytungstate [Cu(phen)(H2O)]2[Cu(phen)(H2O)3]2H[SbW18O60]·5H2O (1) (phen = 1,10-phenanthroline) was synthesized and characterized. The crystal data are listed as follows: C48H59Cu4N8O73SbW18 (Mr = 5600.23), Triclinic, space group P-1, a = 12.4169(9) Å, b = 13.9072(10) Å, c = 14.5712(11) Å, α = 93.8210(10)°, β = 100.0840(10)°, γ = 93.3720(10)°, Z = 1. The counter cation Cu(II) centers show two kinds of coordination environments: octahedral Cu(1) and tetragonal pyramidal Cu(2). The corner-shared Cu(1) and Cu(2) polyhedra are anchored to the surface of polyanion through Cu(1)–O interaction. There are extensive and effective intermolecular hydrogen bonding and π···π interactions to stabilize the structure of compound 1.

Graphical Abstract

A bi-supported Dawson-like heteropolytungstate [Cu(phen)(H2O)]2[Cu(phen)(H2O)3]2H[SbW18O60]·5H2O was synthesized and characterized.

Keywords

Heteropolytungstate Dawson-like cluster Copper Antimony 

Notes

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (20701011), and the Natural Science Foundation of Hebei province (No. B2011205035), and the Education Department Foundation of Hebei province (Z2006436).

References

  1. 1.
    Miras HN, Cooper GJT, Long DL, Bögge H, Müller A, Streb C, Cronin L (2010) Science 327:72–74CrossRefGoogle Scholar
  2. 2.
    Mishra PP, Pigga J, Liu TB (2008) J Am Chem Soc 130:1548–1549CrossRefGoogle Scholar
  3. 3.
    Yin QS, Tan JM, Besson C, Geletii YV, Musaev DG, Kuznetsov AE, Luo Z, Hardcastle KI, Hill CL (2010) Science 328:342–345CrossRefGoogle Scholar
  4. 4.
    Pradeep CP, Long DL, Newton GN, Song YF, Cronin L (2008) Angew Chem Int Ed 47:4388–4391CrossRefGoogle Scholar
  5. 5.
    Gao PS, Cheng TC, Mak W (2009) J Am Chem Soc 131:18257–18259CrossRefGoogle Scholar
  6. 6.
    Peng ZH (2004) Angew Chem Int Ed Engl 43:930–935CrossRefGoogle Scholar
  7. 7.
    Zheng ST, Zhang J, Yang GY (2008) Angew Chem Int Ed Engl 47:3909–3913CrossRefGoogle Scholar
  8. 8.
    Han ZG, Chai T, Zhai XL, Wang JY, Hu CW (2009) Solid State Sci 11:1998–2002CrossRefGoogle Scholar
  9. 9.
    Song YF, Long DL, Cronin L (2007) Angew Chem Int Ed 46:3900–3904CrossRefGoogle Scholar
  10. 10.
    Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García CJ, Martínez-Ferrero E, Almeida M, Lopes EB, Capelli SC, Llusar RM (2004) J Mater Chem 14:1867–1872CrossRefGoogle Scholar
  11. 11.
    Coronado E, Giménez-Saiz C, Gómez-García CJ, Capelli SC (2004) Angew Chem Int Ed 43:3022–3025CrossRefGoogle Scholar
  12. 12.
    Long DL, Burkholder E, Cronin L (2007) Chem Soc Rev 36:105–121CrossRefGoogle Scholar
  13. 13.
    Liu TB, Diemann E, Li HL, Dress AWM, Müller A (2003) Nature 426:59–61CrossRefGoogle Scholar
  14. 14.
    Long DL, Cronin L (2006) Chem Eur J 12:3698–3706CrossRefGoogle Scholar
  15. 15.
    Song YF, McMillan N, Long DL, Thiel J, Ding YL, Chen HS, Gadegaard N, Cronin L (2008) Chem Eur J 14:2349–2354CrossRefGoogle Scholar
  16. 16.
    Pradeep CP, Long DL, Newton GN, Song YF, Cronin L (2008) Angew Chem Int Ed 47:4388–4391CrossRefGoogle Scholar
  17. 17.
    Krebs B, Klein R, Pope MT, Müller A (eds) (1994) Polyoxometalates: from platonic solids to anti-retroviral activity. Kluwer Academic, Dordrecht, p 55Google Scholar
  18. 18.
    Brown ID, Alternatt D (1985) Acta Cryst B 41:244–247CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Zhangang Han
    • 1
  • Qinghua Hao
    • 1
  • Zhaohui Wang
    • 1
  • Xueliang Zhai
    • 1
  1. 1.College of Chemistry & Material ScienceHebei Normal UniversityShijiazhuangChina

Personalised recommendations