Advertisement

Journal of Chemical Crystallography

, Volume 42, Issue 7, pp 759–766 | Cite as

Crystal and Molecular Structure of Two Organic Acid–Base Adducts from 2-Aminopyrimidine and Carboxylic Acids

  • Shouwen Jin
  • Daqi Wang
  • Shanshan Liang
  • Shaojun Chen
Original Paper

Abstract

Two crystalline organic acid–base adducts [(L)·(Chda), L = 2-aminopyrimidine, Chda = 1,4-cyclohexanedicarboxylic acid] (1), and (2-aminopyrimidine):(butane-1,2,3,4-tetracarboxylic acid):2H2O [(HL + )2·(Bta2−)·2H2O, Bta2− = dihydrogen butane-1,2,3,4-tetracarboxylate] derived from 2-aminopyrimidine and carboxylic acids (1,4-cyclohexanedicarboxylic acid, and butane-1,2,3,4-tetracarboxylic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Compound 1 crystallizes in the monoclinic, space group P2(1), with a = 5.2153(5) Å, b = 18.2803(17) Å, c = 7.3409(6) Å, β = 107.9960(10)°, V = 665.62(10) Å3, Z = 2. Compound 2 crystallizes in the triclinic, space group \( P\overline{1} \), with a = 5.2455(7) Å, b = 8.4637(11) Å, c = 12.0299(15) Å, α = 97.9620(10), β = 98.954(2)°, γ = 95.1990(10), V = 519.04(12) Å3, Z = 1. Both supramolecular architectures of the compounds 12 involve O–H···N/N–H···O hydrogen bonds as well as CH–O interactions. The role of these noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, both compounds displayed 3D framework structure.

Graphical Abstract

Due to the weak interactions, the compound displays 3D framework structure.
.

Keywords

Crystal structure Hydrogen bonding Noncovalent interactions 2-Aminopyrimidine Carboxylic acids 

Notes

Acknowledgments

We gratefully acknowledge the financial support of the Education Office Foundation of Zhejiang Province (project no. Y201017321) and the financial support of the Zhejiang A & F University Science Foundation (project no. 2009FK63).

References

  1. 1.
    Lam CK, Mak TCW (2000) Tetrahedron 56:6657CrossRefGoogle Scholar
  2. 2.
    Tanase S, Bouwman E, Long GJ, Shahin AM, Mills AM, Jan Reedijk ALS (2004) Eur J Inorg Chem 4572. doi: 10.1002/ejic.200400609
  3. 3.
    Janiak C, J Chem Soc Dalton Trans (2000) 3885. doi: 10.1039/B003010O
  4. 4.
    Takahashi O, Kohno Y, Nishio M (2010) Chem Rev 110:6049CrossRefGoogle Scholar
  5. 5.
    Berkovitch-Yellin Z, Leiserowitz L (1984) Acta Cryst B40:159Google Scholar
  6. 6.
    Cho KH, No KT, Scheraga HA (2000) J Phys Chem A 104:6505CrossRefGoogle Scholar
  7. 7.
    Koch W, Frenking G, Gauss J, Cremer D (1986) J Am Chem Soc 108:5808CrossRefGoogle Scholar
  8. 8.
    Desiraju GR (2002) Acc Chem Res 35:565CrossRefGoogle Scholar
  9. 9.
    Braga D, Maini L, Paganelli F, Tagliavini E, Casolari S, Grepioni F (2001) J Organomet Chem 637–639:609CrossRefGoogle Scholar
  10. 10.
    Liu JQ, Wang YY, Ma LF, Zhang WH, Zeng XR, Zhong F, Shi QZ, Peng SM (2008) Inorg Chim Acta 361:173CrossRefGoogle Scholar
  11. 11.
    Biswas C, Drew MGB, Escudero D, Frontera A, Ghosh A (2009) Eur J Inorg Chem 15:2238CrossRefGoogle Scholar
  12. 12.
    Maamen M, Gordon DM (1995) Acc Chem Res 28:37 (references therein)Google Scholar
  13. 13.
    Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ (2009) Cryst Growth Des 9:1106CrossRefGoogle Scholar
  14. 14.
    Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1247CrossRefGoogle Scholar
  15. 15.
    Desiraju GR (1989) Crystal engineering, the design of organic solids. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Leiserowitz L (1976) Acta Crystallogr B32:775Google Scholar
  17. 17.
    Kolotuchin SV, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1995) Angew Chem Int Ed Engl 34:2654CrossRefGoogle Scholar
  18. 18.
    Kuduva SS, Craig DC, Nangia A, Desiraju GR (1999) J Am Chem Soc 121:1936CrossRefGoogle Scholar
  19. 19.
    Bernstein J, Etter MC, Leiserowitz L (1994) Struct Correl 2:431CrossRefGoogle Scholar
  20. 20.
    Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629CrossRefGoogle Scholar
  21. 21.
    Reddy LS, Bethune SJ, Kampf JW, Rodríguez-Hornedo N (2009) Cryst Growth Des 9:378CrossRefGoogle Scholar
  22. 22.
    Lee IS, Shin DM, Chung YK (2003) Cryst Growth Des 3:521CrossRefGoogle Scholar
  23. 23.
    Bhogala BR, Nangia A (2003) Cryst Growth Des 3:547CrossRefGoogle Scholar
  24. 24.
    MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29CrossRefGoogle Scholar
  25. 25.
    Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15CrossRefGoogle Scholar
  26. 26.
    Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556CrossRefGoogle Scholar
  27. 27.
    Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844CrossRefGoogle Scholar
  28. 28.
    Men YB, Sun JL, Huang ZT, Zheng QY (2009) Cryst Eng Commun 11:978Google Scholar
  29. 29.
    Lynch DE, Jones GD (2004) Acta Cryst B60:748 (the references cited therein)Google Scholar
  30. 30.
    Skovsgaard S, Bond AD (2009) Cryst Eng Commun 11:444Google Scholar
  31. 31.
    Goswami S, Mahapatra AK, Nigam GD, Chinnakali K, Fun HK, Razak IA (1999) Acta Cryst C55:583Google Scholar
  32. 32.
    Byriel KA, Kennard CHL, Lynch DE, Smith G, Thompson JG (1992) Aust J Chem 45:969CrossRefGoogle Scholar
  33. 33.
    Alshahateet SF (2011) J Chem Crystallogr 41:276CrossRefGoogle Scholar
  34. 34.
    Smith G, Gentner JM, Lynch DE, Byriel KA, Kennard CHL (1995) Aust J Chem 48:1151CrossRefGoogle Scholar
  35. 35.
    Chinnakali K, Fun HK, Goswami S, Mahapatra AK, Nigam GD (1999) Acta Cryst C55:399Google Scholar
  36. 36.
    Jin SW, Zhang WB, Wang DQ, Gao HF, Zhou JZ, Chen RP, Xu XL (2010) J Chem Crystallogr 40:87CrossRefGoogle Scholar
  37. 37.
    Jin SW, Wang DQ, Jin ZJ, Wang LQ (2009) Polish J Chem 83:1937Google Scholar
  38. 38.
    Bruker (2004) SMART and SAINT. Bruker AXS, MadisonGoogle Scholar
  39. 39.
    Sheldrick GM (2000) SHELXTL, structure determination software suite, version 6.14. Bruker AXS, MadisonGoogle Scholar
  40. 40.
    Lynch DE, Thomas LC, Smith G, Byriel KA, Kennard CHL (1998) Aust J Chem 51:867CrossRefGoogle Scholar
  41. 41.
    Smith G, White JM (2001) Aust J Chem 54:97CrossRefGoogle Scholar
  42. 42.
    Sieroń L (2007) Acta Cryst E63:m2336Google Scholar
  43. 43.
    Scheinbeim J, Schempp E (1976) Acta Cryst B32:607Google Scholar
  44. 44.
    Czupiński O, Wojtaś M, Ciunik Z, Jakubas R (2006) Solid State Sci 8:86CrossRefGoogle Scholar
  45. 45.
    Domenicano A, Vaciago A, Coulson CA (1975) Acta Cryst B31:221Google Scholar
  46. 46.
    Najafpour MM, Holynska M, Lis T (2008) Acta Cryst E64:o985Google Scholar
  47. 47.
    Barnes HA, Barnes JC (1996) Acta Cryst C52:731Google Scholar
  48. 48.
    McKee V, Najafpour MM (2007) Acta Cryst E63:o741Google Scholar
  49. 49.
    Etter MC, MacDonald JC, Bernstein J (1990) Acta Cryst B46:256Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Shouwen Jin
    • 1
  • Daqi Wang
    • 2
  • Shanshan Liang
    • 1
  • Shaojun Chen
    • 1
  1. 1.Tianmu College, ZheJiang A & F UniversityLin’AnPeople’s Republic of China
  2. 2.Department of ChemistryLiaocheng UniversityLiaochengPeople’s Republic of China

Personalised recommendations