Skip to main content
Log in

Synthesis, NMR Studies and Crystal Structure of Cryptand 4,7,10,16,21-Pentaoxa-1,13-diazabicyclo[11.5.5]tricosane, [H(3.1.1)·(H2O)3]Cl

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The cryptand 4,7,10,16,21-pentaoxa-1,13-diazabicyclo[11.5.5]tricosane (3.1.1, I) has been synthesized, the crystal structure of the triaquo-hydrochloride salt has been determined by single crystal X-ray crystallography and the 1H- and 13C-NMR chemical shifts have been assigned for the protonated ligand. [(C16H33N2O5)·(H2O)3]Cl, (I), is triclinic with space group \(P\bar{1}\) and cell constants: a = 9.957(3) Å, b = 10.557(5) Å, c = 11.324(3) Å, α = 95.917(8)°, β = 105.574(8)°, γ = 107.506(9)°, V = 1071.4(3) Å3 and Z = 2. In the solid state the cryptand is monoprotonated and holds a water molecule near the central cavity using the hydrogen bonds N13–H13 to O1S, O1S–H1S2 to N1 and O1S–H1S1 to ether oxygen atom O7. Pairs of cryptand molecules are linked by a hydrogen bond network, (O21···H2S2–O2S–H2S1···Cl1)2(μ-H3S1–O3S–H3S2)2, that interacts with an ether oxygen (O21, O21A) in each ligand molecule.

Graphical Abstract

The synthesis, NMR characterization, and X-ray structure of cryptand 3.1.1 are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dietrich B, Lehn JM, Sauvage JP Tetrahedron Lett (1969) 10:2885, 2889. doi:10.1016/S0040-4039(01)88299-X; doi:10.1016/S0040-4039(01)88300-3

  2. Lehn JM, Sauvage JP (1975) J Am Chem Soc 97:6700. doi:10.1021/ja00856a018

    Article  CAS  Google Scholar 

  3. Lehn JM (1973) Struct Bonding 16:1. doi:10.1017/BFb0004364

    Article  CAS  Google Scholar 

  4. Dietrich B, Lehn JM, Sauvage JP, Blanzat J (1973) Tetrahedron 29:1629. doi:10.1016/S0040-4020(01)83409-8

    Article  CAS  Google Scholar 

  5. Cheney J, Lehn JM (1972) J Chem Soc Chem Commun (8):487. doi:10.1039/C39720000487

  6. Krakowiak KE, Zhang XX, Bradshaw JS, Zhu CY, Izatt RM (1995) J lncl Phenom Mol Rec Chem 23:223. doi:10.1007/BF00709580

    Article  CAS  Google Scholar 

  7. Zhang XX, Izatt RM, Krakowiak KE, Bradshaw JS (1997) Inorg Chim Acta 254:43. doi:10.1016/S0020-1693(96)05135-3

    Article  CAS  Google Scholar 

  8. Tarnowska A, Jarosz M, Jurczak J (2004) Synthesis 369. doi:10.1055/s-2004-815945

  9. Bazzicalupi C, Bencini A, Bianchi A, Fusi V, Paoletti P, Valtancoli B (1994) J Chem Soc Perkin Trans 2:815. doi:10.1039/P29940000815

    Google Scholar 

  10. Bazzicalupi C, Bencini A, Bianchi A, Fusi V, Giorgi C, Paoletti P, Valtancoli B (1994) J Chem Soc Dalton Trans 3581. doi:10.1039/DT9940003581

  11. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29:2176. doi:10.1021/om100106e

    Article  CAS  Google Scholar 

  12. Data collection: SMART Software Reference Manual (1998) Bruker AXS Inc., Madison

  13. Data reduction: SAINT Software Reference Manual Bruker (1998) Bruker AXS Inc., Madison

  14. Sheldrick GM (2002) SADABS. University of Gottingen, Germany

    Google Scholar 

  15. Sheldrick GM (2008) Acta Cryst A64:112–122. doi:10.1107/S0108767307043930

    CAS  Google Scholar 

  16. Sheldrick (1995) International tables for crystallography, Vol C, Tables 6.1.1.4, 4.2.6.8 and 4.2.4.2. Kluwer, Boston

    Google Scholar 

  17. Izatt RM, Bradshaw JS, Nielsen SA, Lamb JD, Christensen JJ, Sen D (1985) Chem Rev 85:271. doi:10.1021/cr00068a003

    Article  CAS  Google Scholar 

  18. Miller JM, Onyszchuk M (1961) Can J Chem 42:1518. doi:10.1139/v64-234

    Article  Google Scholar 

  19. Chekhlov AN (2005) J Struct Chem 46:185. doi:10.1007/s10947-006-0029-x

    Article  CAS  Google Scholar 

  20. Chekhlov AN (2006) J Struct Chem 47:513. doi:10.1007/s10947-006-0330-8

    Article  CAS  Google Scholar 

  21. Dale J (1980) Israel J Chem 20:3

    CAS  Google Scholar 

  22. Khan MA, Taylor RW, Lehn JM, Dietrich B (1988) Acta Cryst C44:1928. doi:10.1107/S0108270188007097

    CAS  Google Scholar 

  23. Dobler M (1981) Ionophores and their structures. Wiley, New York, pp 133–145

    Google Scholar 

  24. Luger P, Buschmann J, Knochel A, Tiemann D, Patz M (1991) Acta Cryst C47:1860. doi:10.1107/S0108270191000082

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Oklahoma Center for the Advancement of Science and Technology (grant HR06-113). The authors also thank the National Science Foundation (CHE-0130835) and the University of Oklahoma for funds to acquire the diffractometer and computers used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T., Buckley, C.M., Ellis, T.K. et al. Synthesis, NMR Studies and Crystal Structure of Cryptand 4,7,10,16,21-Pentaoxa-1,13-diazabicyclo[11.5.5]tricosane, [H(3.1.1)·(H2O)3]Cl. J Chem Crystallogr 42, 573–577 (2012). https://doi.org/10.1007/s10870-012-0281-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0281-1

Keywords

Navigation