Journal of Chemical Crystallography

, Volume 42, Issue 6, pp 555–559 | Cite as

Resolution of the Chiral (1R,2S) Enantiomer of cis-Cyclohexane-1,2-dicarboxylic Acid in the Brucinium Salt 2,3-Dimethoxy-10-oxostrychnidinium (1R,2S)-2-carboxycyclohexane-1-carboxylate Dihydrate

  • Graham Smith
  • Urs D. Wermuth
  • Michael L. Williams
Original Paper


The structure of the 1:1 brucinium salt of cis-cyclohexane-1,2-dicarboxylic acid, 2,3-dimethoxy-10-oxostrychnidinium (1R,2S)-2-carboxycyclohexane-1-carboxylate dihydrate, has revealed the resolved (1R,2S) enantiomer of the acid. Crystals of the compound are orthorhombic, space group P212121, with unit cell dimensions a = 8.1955(3), b = 12.4034(3), c = 29.9073(9) Å, and Z = 4. The asymmetric unit comprises the brucinium cation, the hydrogen cis-cyclohexane-1,2-dicarboxylate anion, in which the carboxylate group is disordered over two sites (58, 42%), and two water molecules of solvation, one of which is occupies two 50% occupancy sites. The classic undulating brucinium cation substructures are present with the anion and the water molecules occupying the interstitial cavities and are hydrogen-bonded to them in a two-dimensional network structure.

Graphical Abstract

The structure determination of the 1:1 proton-transfer hydrate salt of cis-cyclohexane-1,2-dicarboxylic acid with brucine has revealed the presence of the (1R,2S) enantiomeric form of the acid in a hydrogen-bonded structure.


Brucine cis-cyclohexane-1,2-dicarboxylic acid Proton-transfer compound Hydrogen bonding 



The authors acknowledge financial support from the Australian Research Council, the Science and Engineering Faculty (Queensland University of Technology) and Griffith University.


  1. 1.
    Eliel EL (1962) Stereochemistry of Carbon Compounds. McGraw-Hill, New York, pp 211–215Google Scholar
  2. 2.
    Newman P (1982) Optical Resolution Procedures for Chemical Compounds Vol. 2 Acids, Part 1. Optical Resolution Centre, New York, pp 332–333Google Scholar
  3. 3.
    Fischer E (1899) Berichte 32:2451Google Scholar
  4. 4.
    Gould RO, Walkinshaw MD (1984) J Am Chem Soc 106:7840CrossRefGoogle Scholar
  5. 5.
    Boiadjiev SE, Person RV, Puzicha G, Knobler C, Maverick E, Trueblood KN, Lightner DA (1992) J Am Chem Soc 114:10123CrossRefGoogle Scholar
  6. 6.
    Dijksma FJJ, Gould, RO, Parsons S, Taylor P, Walkinshaw MD (1998) Chem Commun:745Google Scholar
  7. 7.
    Bialońska A, Ciunik Z (2004) CrystEngComm 6:276CrossRefGoogle Scholar
  8. 8.
    Bialońska A, Ciunik Z, Popek T, Lis T (2005) Acta Crystallogr C 61:o88CrossRefGoogle Scholar
  9. 9.
    Smith G, Wermuth UD, White JM (2006) Acta Crystallogr C 62:o353CrossRefGoogle Scholar
  10. 10.
    CrysAlis PRO (2010) (version 1.171.55). Agilent Technologies Ltd., Yarnton, EnglandGoogle Scholar
  11. 11.
    Altomare A, Cascarno C, Giacovazzo A, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Crystallogr 27:435Google Scholar
  12. 12.
    Sheldrick GM (2008) Acta Crystallogr A 64:112CrossRefGoogle Scholar
  13. 13.
    Farrugia LJ (1999) J Appl Crystallogr 32:837CrossRefGoogle Scholar
  14. 14.
    Peerdeman AF (1956) Acta Crystallogr 9:824CrossRefGoogle Scholar
  15. 15.
    Spek AL (2009) Acta Crystallogr D 65:48CrossRefGoogle Scholar
  16. 16.
    Holmes HL (1952) In: Manske RFH, Holmes HL (eds) The Alkaloids Vol II. Academic, New York, p 514Google Scholar
  17. 17.
    Smith G, Wermuth UD, Healy PC, White JM (2006) Aust J Chem 59:320CrossRefGoogle Scholar
  18. 18.
    Smith G, Wermuth UD, White JM (2005) Acta Crystallogr C 61:o621CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Graham Smith
    • 1
  • Urs D. Wermuth
    • 1
  • Michael L. Williams
    • 2
  1. 1.Science and Engineering Faculty, Queensland University of TechnologyBrisbaneAustralia
  2. 2.School of Biomolecular and Physical Sciences, Griffith UniversityNathanAustralia

Personalised recommendations