Advertisement

Journal of Chemical Crystallography

, Volume 41, Issue 9, pp 1391–1394 | Cite as

Structural Studies of Electron Deficient Titanacyclobutanes

  • Benjamin G. Harvey
  • Atta M. Arif
  • Richard D. Ernst
Original Paper

Abstract

Two 16 electron titanacyclobutanes of the formula Ti(C5H4R)22-CH2)2C(CH3)(i-C3H7) (R=H, CH3) have been prepared from the reaction of Ti(C5H5)22-CH2)(μ2-Cl)Al(CH3)2 or Ti(C5H4CH3)22-CH2)(μ2-Cl)Al(CH3)2 with H2C=C(CH3)(i-C3H7). Structural parameters, most notably lengthened C–C bonds in the titanacyclobutane ring, for both complexes reveal the expected presence of (C–C)→Ti agostic interactions. The complexes are isomorphous, crystallizing in the monoclinic space group Cc. For Ti(C5H5)22-CH2)2C(CH3)(i-C3H7), a = 11.3459(3) Å, b = 16.2108(4) Å, c = 8.1646(2) Å, β = 105.5276(16)°, V = 1446.87(6)°, Dcalc = 1.268 at 150(1) K. For Ti(C5H4CH3)22-CH2)2C(CH3)(i-C3H7), a = 12.6591(2) Å, b = 16.2795(4) Å, c = 8.2462(2) Å, β = 107.2421(14)°, V = 1623.04(6) Å3, Dcalc = 1.245 at 150(1) K.

Graphical Abstract

Structural studies of two 16 electron titanacyclobutanes reveal lengthened C–C bonds in the four-membered ring, indicative of agostic (C–C)→Ti interactions, as found in related species.

Keywords

Crystal structure Titanacyclobutane Agostic interaction 

References

  1. 1.
    Grubbs RH (2004) Tetrahedron 60:7117CrossRefGoogle Scholar
  2. 2.
    Katz TJ (1977) Adv Organomet Chem 16:283CrossRefGoogle Scholar
  3. 3.
    Suresh CH, Koga N (2004) Organometallics 23:76CrossRefGoogle Scholar
  4. 4.
    Harvey BG, Mayne CL, Arif AM, Tomaszewski R, Ernst RD (2005) J Am Chem Soc 127:16426 (corrn.: (2006) 128:1770)Google Scholar
  5. 5.
    Harvey BG, Arif AM, Ernst RD (2008) J Mol Struct 890:107CrossRefGoogle Scholar
  6. 6.
    Jaffart J, Etienne M, Reinhold M, McGrady JE, Maseras F (2003) J Chem Soc Chem Commun:876Google Scholar
  7. 7.
    Goldbuss B, Schleyer PR, Hampel F (1996) J Am Chem Soc 118:12183CrossRefGoogle Scholar
  8. 8.
    Brayshaw SK, Sceats EL, Green JL, Weller AS (2007) Proc Natl Acid Sci USA 104:6921CrossRefGoogle Scholar
  9. 9.
    Frech CM, Milstein D (2006) J Am Chem Soc 128:12434CrossRefGoogle Scholar
  10. 10.
    Suresh CH, Baik M-H (2005) J Chem Soc Dalton Trans:2982Google Scholar
  11. 11.
    Suresh CH (2006) J Organometal Chem 691:5366CrossRefGoogle Scholar
  12. 12.
    Lord RL, Wang H, Vieweger M, Baik M-H (2006) J Organometal Chem 691:5505CrossRefGoogle Scholar
  13. 13.
    Rowley CN, van der Eide EF, Piers WE, Woo TK (2008) Organometallics 27:6043CrossRefGoogle Scholar
  14. 14.
    Scheins S, Messerschmidt M, Gembicky M, Pitak M, Volkov A, Coppens P, Harvey BG, Turpin GC, Arif AM, Ernst RD (2009) J Am Chem Soc 131:6154CrossRefGoogle Scholar
  15. 15.
    Finch WCA, Grubbs RH (1988) J Am Chem Soc 110:2406CrossRefGoogle Scholar
  16. 16.
    Ott KC, Grubbs RH (1981) J Am Chem Soc 103:5922CrossRefGoogle Scholar
  17. 17.
    Otwinowski Z, Minor W (1997) Methods Enzymol 276:307CrossRefGoogle Scholar
  18. 18.
    Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Crystallogr 32:115CrossRefGoogle Scholar
  19. 19.
    Sheldrick GM (1997) SHELXL97, Programs for crystal structure analysis. University of Göttingen, GermanyGoogle Scholar
  20. 20.
    Wilson AJC (1992) International tables for crystallography, vol C. Kluwer Academic Publisher, Dordrecht, pp 206–222; 476–516Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Benjamin G. Harvey
    • 1
  • Atta M. Arif
    • 1
  • Richard D. Ernst
    • 1
  1. 1.Department of ChemistryUniversity of UtahSalt LakeUSA

Personalised recommendations