Journal of Chemical Crystallography

, Volume 41, Issue 9, pp 1342–1347 | Cite as

The Synthesis, X-ray Structure Analysis and Photophysical Characterization of 2-(9-Anthrylmethylideneamino)-5-methylphenol

  • Andrés Villalpando
  • Frank R. Fronczek
  • Ralph Isovitsch
Original Paper


The Schiff base 2-(9-anthrylmethylideneamino)-5-methylphenol has been prepared in good yield (55%) from commercially available starting materials. The photophysical properties of this compound and its precursor have been determined. The room temperature absorption spectra of both in various solvents exhibited two π → π* transitions that had similar maxima, one that was more intense at approximately 260 nm and a weaker one at approximately 400 nm. Solutions of both compounds in methylcyclohexane and propanenitrile were luminescent at room temperature with maxima in the range 450–500 nm. The emission spectra of both at 77 K in methylcyclohexane solution were similar and exhibited vibrational structure with maxima in the range 460–522 nm. At room temperature and 77 K both compounds had short excited state lifetimes that characterized their emission as fluorescence. The title compound, C22H17NO, crystallized in the triclinic space group \( P{\bar{\text{1}}} \) with a = 8.5533 (5) Å, b = 14.0926 (10) Å, c = 14.9382 (11) Å, α = 104.204 (6)°, β = 106.480 (5)°, γ = 105.091 (5)°, V = 1564.9 (2) Å3, T = 90 K, D c = 1.322 Mg m−3, Z = 4, R = 0.033.

Graphical Abstract

The X-ray structure and photophysical properties of the title compound (1) were determined.


Schiff base Crystal structure Absorption Emission Lifetime 



The authors would like to thank the Fletcher Jones Foundation for funds that allowed the purchase of the fluorometer and the TCSPC apparatus. Whittier College is acknowledged for the funds that supported this research. The Edison International Foundation is thanked for a summer research stipend for AV. The purchase of the diffractometer was made possible by grant No. LEQSF(1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.


  1. 1.
    Borisova NE, Reshetova MD, Ustynyu YA (2007) Chem Rev 107:46CrossRefGoogle Scholar
  2. 2.
    Casellato U, Tamburini S, Tomasin P, Viagato PA (2004) Inorg Chim Acta 357:4191CrossRefGoogle Scholar
  3. 3.
    Vigato PA, Tamburini S (2004) Coord Chem Rev 248:1717CrossRefGoogle Scholar
  4. 4.
    Srimurugan S, Viswanathan B, Kanthadai TK, Varghese B (2005) Tetrahedron Lett 46:3151CrossRefGoogle Scholar
  5. 5.
    Marco-Contelles J, Pérez-Mayoral E, Samadi A, Carreiras M, Soriano E (2009) Chem Rev 109:2652CrossRefGoogle Scholar
  6. 6.
    Abdallah SM, Mohamed GG, Zayed MA, El-Ela MSA (2009) Spectrochim Acta Part A 73:833CrossRefGoogle Scholar
  7. 7.
    Zhou J, Li X, Sun H (2010) J Organomet Chem 695:297CrossRefGoogle Scholar
  8. 8.
    Mak CSK, Wong HL, Leung QY, Tam WY, Chan WK, Djurisic AB (2009) J Organomet Chem 694:2770CrossRefGoogle Scholar
  9. 9.
    Ziólek M, Burdzinski G, Filipczak K, Karolczak J, Maciejewski A (2008) Phys Chem Chem Phys 10:1304CrossRefGoogle Scholar
  10. 10.
    Sheldrick GM (2008) Acta Cryst Sect A 64:112CrossRefGoogle Scholar
  11. 11.
    Sellarajah S, Lekishvili T, Bowring C, Thompsett AR, Rudyk H, Birkett CR, Brown DR, Gilbert IH (2004) J Med Chem 47:5515CrossRefGoogle Scholar
  12. 12.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, San DiegoGoogle Scholar
  13. 13.
    Yildiz M, Ünver H, Dülger B, Erdener D, Ocak N, Erdönmez A, Durlu TN (2005) J Mol Struct 738:253CrossRefGoogle Scholar
  14. 14.
    Doleck T, Attard J, Fronczek FR, Moskun A, Isovitsch R (2009) Inorg Chim Acta 362:3872CrossRefGoogle Scholar
  15. 15.
    Zhang G, Yang G, Ma JS (2006) J Chem Crystallogr 36:631CrossRefGoogle Scholar
  16. 16.
    Steiner T (2002) Angew Chem Int Ed 41:49Google Scholar
  17. 17.
    Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1Google Scholar
  18. 18.
    De RL, Mandal M, Roy L, Mukherjee J (2008) Indian J Chem 47A:207Google Scholar
  19. 19.
    Villalpando A, Fronczek FR, Isovitsch R (2010) Acta Cryst E66:o1353Google Scholar
  20. 20.
    Ünver H, Yildiz M, Kiraz A, Özgen Ö (2009) J Chem Crystallogr 39:17CrossRefGoogle Scholar
  21. 21.
    Berlman IB (1971) Handbook of fluorescene spectra of aromatic molecules. Academic Press, New York, pp 356–369Google Scholar
  22. 22.
    Dey J, Haynes JL, Warner IM, Chandra AK (1997) J Phys Chem A 101:2271CrossRefGoogle Scholar
  23. 23.
    Turbeville W, Dutta PK (1990) J Phys Chem 94:4060CrossRefGoogle Scholar
  24. 24.
    Horiba Jobin Yvon DAS6 fluorescene decay analysis software user guide: version 2744.F (2008) Edison, New Jersey, pp 29–31Google Scholar
  25. 25.
    Hirayama S, Lampert RA, Phillips D (1985) J Chem Soc Faraday Trans 2 81:371CrossRefGoogle Scholar
  26. 26.
    Guha D, Mandal A, Koll A, Filarowski A, Mukherjee S (2000) Spectrochim Acta Part A 56:2669CrossRefGoogle Scholar
  27. 27.
    Mandal A, Koll A, Filarowski A, Majumder D, Mukherjee S (1999) Spectrochim Acta Part A 55:2861CrossRefGoogle Scholar
  28. 28.
    Thomspon RB, Gratton E (1988) Anal Chem 60:670CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Andrés Villalpando
    • 1
  • Frank R. Fronczek
    • 2
  • Ralph Isovitsch
    • 1
  1. 1.Department of ChemistryWhittier CollegeWhittierUSA
  2. 2.Department of ChemistryLouisiana State UniversityBaton RougeUSA

Personalised recommendations