Journal of Chemical Crystallography

, Volume 41, Issue 5, pp 742–746 | Cite as

Synthesis and Crystal Structure of 2-Amino-4,6,6-trimethyl-cyclohex-2-en-1,1,3,4(S)-tetracarbonitrile

  • Nitu Mahajan
  • Pinki Kotwal
  • Vivek K. Gupta
  • T. K. Razdan
Original Paper


Crystal structure analysis of the novel 2-amino-4,6,6-trimethyl-cyclohex-2-en-1,1,3,4(S)-tetracarbonitrile, obtained in 70% yield, by the Bi(OTf)3 catalyzed reaction of acetone and malononitrile, at room temperature, is described. For the first time Bi(OTf)3–Et3N has been used in this inverse electron demand Diels–Alder cycloaddition reaction involving the participation of carbonitrile π-bond. The structure of the molecule was established by spectral analysis and X-ray diffraction studies. The compound crystallizes in the monoclinic space group P21/n with unit cell parameters: a = 8.0580 (17), b = 13.038 (3), c = 12.641 (3) Å, β = 101.883 (4)°, Z = 4. The crystal structure was solved by direct methods and refined to R = 0.0506 for 2,456 observed reflections. The cyclohexene ring of the molecule adopts a distorted sofa conformation. The molecules in the unit cell are arranged in layers. The crystal structure in stabilized by C–H⋯N and N–H⋯N interactions.

Graphical Abstract

Crystal structure analysis of the novel 2-amino-4,6,6-trimethyl-cyclohex-2-en-1,1,3,4(S)-tetracarbonitrile.


Bismuth triflate-triethylamine Inverse electron demand Diels–Alder reaction Crystal structure Sofa Direct methods Hydrogen bonding 



The authors are thankful to Prof. P. K. Bharadwaj, Department of Chemistry, IIT, Kanpur, India, for the use of the data collection facility.


  1. 1.
    Zhang XM, Lu JT (2007) Acta Crystallogr E63:3861Google Scholar
  2. 2.
    Mehta G, Singh V (1999) Chem Rev 99:881CrossRefGoogle Scholar
  3. 3.
    Fillion E, Beingessner RL (2003) J Org Chem 68:9484CrossRefGoogle Scholar
  4. 4.
    Nakamura H, Aoyagi K, Shim JG, Yamamoto Y (2001) J Am Chem Soc 123:372CrossRefGoogle Scholar
  5. 5.
    Alonso F, Beletskaya IP, Yus M (2004) Chem Rev 104:3079CrossRefGoogle Scholar
  6. 6.
    Wender PA, Rieck H, Fuji M (1998) J Am Chem Soc 120:10976CrossRefGoogle Scholar
  7. 7.
    Wender PA, Husfeld CO, Langkopf E, Love JA, Pleuss N (1998) Tetrahedron 54:7203CrossRefGoogle Scholar
  8. 8.
    Hollis TK, Odenkirk W, Robinson NP, Whelan J, Bosnich B (1993) Tetrahedron 49:5415CrossRefGoogle Scholar
  9. 9.
    Zeni G, Larock RC (2004) Chem Rev 104:2285CrossRefGoogle Scholar
  10. 10.
    Verma AK, Koul S, Pannu APS, Razdan TK (2007) Tetrahedron 63:8715CrossRefGoogle Scholar
  11. 11.
    Verma AK, Koul S, Razdan TK, Kapoor KK (2006) Can J Chem 84:1064CrossRefGoogle Scholar
  12. 12.
    Verma AK, Koul S, Razdan TK, Kapoor KK (2006) Tetrahedron Lett 47:837CrossRefGoogle Scholar
  13. 13.
    Verma AK, Koul S, Kapoor KK, Razdan TK (2007) Aust J Chem 60:883CrossRefGoogle Scholar
  14. 14.
    Sheldrick GM (1997) SHELX97. University of Gottingen, GottingenGoogle Scholar
  15. 15.
    Farrugia LJ (1997) J Appl Crystallogr 30:565CrossRefGoogle Scholar
  16. 16.
    Farrugia J (1999) J Appl Crystallogr 32:837CrossRefGoogle Scholar
  17. 17.
    Nardelli M (1995) J Appl Crystallogr 28:659CrossRefGoogle Scholar
  18. 18.
    Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans II:S1–S19Google Scholar
  19. 19.
    Duax WL, Norton DA (1975) Atlas of steroid structures, vol 1. Plenum, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nitu Mahajan
    • 1
  • Pinki Kotwal
    • 2
  • Vivek K. Gupta
    • 2
  • T. K. Razdan
    • 1
  1. 1.P.G. Department of ChemistryUniversity of JammuJammu TawiIndia
  2. 2.P.G. Department of PhysicsUniversity of JammuJammu TawiIndia

Personalised recommendations