Advertisement

Journal of Chemical Crystallography

, Volume 41, Issue 3, pp 291–296 | Cite as

Molecular Association of Almotriptan with Oxalate and Terephthalate Anions

  • B. Sridhar
  • K. Ravikumar
  • H. Krishnan
  • A. N. Singh
Original Paper

Abstract

Crystal structures of anti-migraine drug almotriptan were crystallized with oxalic acid (I) and with terephthalic acid (II) and their crystal structures and molecular associations were determined using X-ray diffraction methods. Crystals of both (I) and (II) are monoclinic, space group P21/c, with a = 5.6270(4) Å, b = 27.6419(19) Å, c = 13.6228(9) Å, β = 93.057(1)°, V = 2115.9(3) Å3, Z = 4 (I) and a = 13.3756(15) Å, b = 15.6065(17) Å, c = 10.7238(12) Å, β = 98.017(2)°, V = 2216.7(4) Å3, Z = 4 (II). In almotriptan oxalate {systematic name: N,N-dimethyl-2-[5-(pyrrolidin-1-ylsulfonyl-methyl)-1H-indol-3-yl]-ethanaminium semioxalate}, C17H26N3O2S+, C2HO4 , (I) and in almotriptan hemi terephthalate hydrate {systematic name: N,N-dimethyl-2-[5-(pyrrolidin-1-ylsulfonyl-methyl)-1H-indol-3-yl]-ethanaminium hemi terephthalate monohydrate}, C17H26N3O2S+, 0.5(C8H4O4 2−), H2O, (II), both the almotriptan cations form a trimer with the corresponding anions via N–H···O hydrogen bonds. In (I), the oxalate salt is monoprotonated and in (II), the terephthalic acid is located across the inversion centre and exists as doubly protonated anion. In (I), the cation and anion are interlinked by the N–H···O and O–H···O hydrogen bonds into continuous two-dimensional layers generate an R 6 6 (34) hydrogen-bonded motif tetramers running parallel to the (0 0 1) plane. In (II), the cation and water form a centrosymmetric tetramer of R 4 4 (22) hydrogen-bonded motif via N–H···O and O–H···O hydrogen bonds and further cross-linked by centrosymmetric anions to form an infinite three-dimensional supramolecular hydrogen-bonded networks.

Graphical Abstract

In the present study, we have determined the crystal structures of almotriptan with oxalate and terephthalate anions.
.

Keywords

Antimigraine Salts Molecular conformation Disorder Tetramers Supramolecular network 

Notes

Acknowledgments

The authors thank Dr J. S. Yadav, Director of IICT, for his kind encouragement and support.

References

  1. 1.
    Wermuth CH, Stahl PH (2002) Handbook of pharmaceutical salts: properties, selection and use. Wiley-VCH, Weinheim, Germany, pp 1–7Google Scholar
  2. 2.
    Russell VA, Etter MC, Ward MD (1994) J Am Chem Soc 116:1941–1952CrossRefGoogle Scholar
  3. 3.
    Aakeroey CB, Hughes DP, Nieuwenhuyzen M (1996) J Am Chem Soc 118:10134–10140CrossRefGoogle Scholar
  4. 4.
    Burchell CJ, Glidewell C, Lough AJ, Ferguson G (2001) Acta Crystallogr B57:201–212Google Scholar
  5. 5.
    Bou J, Domenech T, Puig J, Heredia A, Gras J, Fernandez-Forner D, Beleta J, Palacios JM (2000) Eur J Pharmacol 410:33–41CrossRefGoogle Scholar
  6. 6.
    Gras J, Bou J, Llenas J, Fernandez AG, Palacios JM (2000) Eur J Pharmacol 410:43–51CrossRefGoogle Scholar
  7. 7.
    Ravikumar K, Sridhar B, Krishnan H, Singh AN (2008) Acta Crystallogr C64:o15–o17Google Scholar
  8. 8.
    Sridhar B, Ravikumar K (2007) Mol Cryst Liq Cryst 461:131–141CrossRefGoogle Scholar
  9. 9.
    Sridhar B, Ravikumar K, Krishnan H, Singh AN (2010) Acta Crystallogr C66:o33–o38Google Scholar
  10. 10.
    Bruker (2001) SAINT (version 6.28a) and SMART (version 5.625). Bruker AXS Inc., Madison, WI, USAGoogle Scholar
  11. 11.
    Sheldrick GM (2008) Acta Crystallogr A64:112–122Google Scholar
  12. 12.
    Brandenburg K, Putz H (2005) DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, GermanyGoogle Scholar
  13. 13.
    Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Crystallogr 41:466–470CrossRefGoogle Scholar
  14. 14.
    Etter MC (1990) Acc Chem Res 23:120–126CrossRefGoogle Scholar
  15. 15.
    Etter MC, MacDonald JC, Bernstein J (1990) Acta Crystallogr B46:256–262Google Scholar
  16. 16.
    Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555–1573CrossRefGoogle Scholar
  17. 17.
    Speakman JC (1972) Struct Bond 12:141CrossRefGoogle Scholar
  18. 18.
    Emsley J (1980) Chem Soc Rev 9:91CrossRefGoogle Scholar
  19. 19.
    Aakeroey CB, Nieuwenhuyzen M (1994) J Am Chem Soc 116:10983–10991CrossRefGoogle Scholar
  20. 20.
    Jeffrey JA, Saenger W (1991) Hydrogen bonding in biological structures. Springer Verlag, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • B. Sridhar
    • 1
  • K. Ravikumar
    • 1
  • H. Krishnan
    • 2
  • A. N. Singh
    • 2
  1. 1.Laboratory of X-Ray CrystallographyIndian Institute of Chemical Technology (IICT)HyderabadIndia
  2. 2.S M S Pharma Research CentreHyderabadIndia

Personalised recommendations