Advertisement

Journal of Chemical Crystallography

, Volume 40, Issue 9, pp 753–760 | Cite as

On the Two Closely Related Phases of [Ru(C5Me5)(η6-1,3-(Me2NCH2)2C6H4)](BF4) and the Reversible Solid–Solid Order–Disorder Phase Transition

  • Maxime A. Siegler
  • Sylvestre Bonnet
  • Antoine M. M. Schreurs
  • Robertus J. M. Klein Gebbink
  • Gerard van Koten
  • Anthony L. Spek
Original Paper
  • 71 Downloads

Abstract

Crystals of the complex [Ru(C5Me5)(η6-1,3-(Me2NCH2)2C6H4)](BF4) have been examined over the temperature range 150–300 K via X-ray diffraction measurements. This study shows that the Ru complex is a two-phase system in this T-range and the solid–solid transition is reversible. At 150 K, phase II (P21/c, Z′ = 4) is ordered and non-merohedrally twinned, a = 16.4396 (9) Å, b = 17.3226 (4) Å, c = 32.1874 (11) Å, β = 91.375 (2)°. At 295 K, phase I (Pbca, Z′ = 1) is disordered, a = 8.5071 (3) Å, b = 17.1567 (3) Å, c = 32.8250 (8) Å. The relationship between the two phases is obvious because the packing remains similar in the two phases. The greatest structural changes between the two phases are found in the rows of adjacent cations [Ru(C5Me5)(η6-1,3-(Me2NCH2)2C6H4)]+ packed along the a direction. These rows are ordered in phase II but are disordered in phase I. The phase transition is first order. Significant changes in thermal motion for the cations are considered as being the driving force for the occurrence of this phase transition.

Graphical Abstract

The X-ray diffraction study showed that the complex [Ru(C5Me5)(η6-1,3-(Me2NCH2)2C6H4)](BF4) is a two-phase system between 150 and 300 K.

Keywords

Solid–solid phase transition Polymorphism First-order 

Notes

Acknowledgments

We gratefully acknowledge the support of this research by Utrecht University and the NRSC-Catalysis program. This work was also supported in part (A.L.S.) by the Council for the Chemical Sciences of The Netherlands Organization for Scientific Research (CW-NWO).

Supplementary material

10870_2010_9732_MOESM1_ESM.doc (1.2 mb)
DOC 1237 kb)

References

  1. 1.
    Albrecht M, van Koten G (2001) Angew Chem Int Ed 40:3750CrossRefGoogle Scholar
  2. 2.
    Albrecht M, van Koten G (1999) Adv Mat 11:171CrossRefGoogle Scholar
  3. 3.
    Singleton JT (2003) Tetrahedron 59:1837CrossRefGoogle Scholar
  4. 4.
    Bonnet S, Lutz M, Spek AL, van Koten G, Klein Gebbink RJM (2008) Organometallics 27:159CrossRefGoogle Scholar
  5. 5.
    Siegler MA, Parkin S, Selegue JP, Brock CP (2008) Acta Cryst B 64:725CrossRefGoogle Scholar
  6. 6.
    Sielger MA (2007) PhD Dissertation, University of Kentucky. http://lib.uky.edu/ETD/ukychem2007d00664/dissertationMASiegler.pdf
  7. 7.
    Bernstein J (2002) Polymorphism in molecular crystals. Oxford University Press, USAGoogle Scholar
  8. 8.
    Bendeif EE, Dahaoui S, François M, Benali-Cherif N, Lecomte C (2005) Acta Cryst B 61:700CrossRefGoogle Scholar
  9. 9.
    Barnett SA, Broder CK, Shankland K, David WIF, Ibberson RM, Tocker DA (2006) Acta Cryst B 62:287CrossRefGoogle Scholar
  10. 10.
    David WIF, Ibberson RM, Cox SFJ, Wood PT (2006) Acta Cryst B 62:953CrossRefGoogle Scholar
  11. 11.
    Fagan PJ, Ward MD, Calabrese JC (1989) J Am Chem Soc 111:1698CrossRefGoogle Scholar
  12. 12.
    Nonius (1999) COLLECT; Nonius BV, Delft, The NetherlandsGoogle Scholar
  13. 13.
    Schreurs AMM (2005) PEAKREF. University of Utrecht, The NetherlandsGoogle Scholar
  14. 14.
    Duisenberg AJM, Kroon-Batenburg LMJ, Schreurs AMM (2003) J Appl Cryst 36:220CrossRefGoogle Scholar
  15. 15.
    Schreurs AMM, Xian X, Kroon-Batenburg LMJ (2010) J Appl Cryst 43:70CrossRefGoogle Scholar
  16. 16.
    Beurskens PT, Beurskens G, de Gelder R, Garcia-Granda S, Gould RO, Israel R, Smits JMM (1999) The DIRDIF99 program system. Technical Report of the Crystallography Laboratory, University of Nijmegen, The NetherlandsGoogle Scholar
  17. 17.
    Sheldrick GM (1986) SHELXS86. University of Göttingen, GermanyGoogle Scholar
  18. 18.
    Sheldrick GM (2008) Acta Cryst A 64:112CrossRefGoogle Scholar
  19. 19.
    Sheldrick GM (1999-2003) SADABS. University of Göttingen, GermanyGoogle Scholar
  20. 20.
    Sheldrick GM (2003) TWINABS. University of Göttingen, GermanyGoogle Scholar
  21. 21.
    Duisenberg AJM (1992) J Appl Cryst 25:92CrossRefGoogle Scholar
  22. 22.
    Duisenberg AJM, Hooft RWW, Schreurs AMM, Kroon J (2000) J Appl Cryst 33:893CrossRefGoogle Scholar
  23. 23.
    Mackay AL (1984) Acta Cryst A 40:165CrossRefGoogle Scholar
  24. 24.
    Spek AL (2003) J Appl Cryst 36:7CrossRefGoogle Scholar
  25. 25.
    Herbstein F (2006) Acta Cryst B 62:341CrossRefGoogle Scholar
  26. 26.
    Allen FH (2002) Acta Cryst B 58:380CrossRefGoogle Scholar
  27. 27.
    Desiraju GR (2007) CrystEngComm 9:91CrossRefGoogle Scholar
  28. 28.
    Anderson KM, Steed JW (2007) CrystEngComm 9:328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maxime A. Siegler
    • 1
    • 3
  • Sylvestre Bonnet
    • 2
    • 4
  • Antoine M. M. Schreurs
    • 1
  • Robertus J. M. Klein Gebbink
    • 2
  • Gerard van Koten
    • 2
  • Anthony L. Spek
    • 1
  1. 1.Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
  2. 2.Organic Synthesis and Catalysis, Debye Institute for Nanomaterials Science, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
  3. 3.Department of ChemistryThe Johns Hopkins UniversityBaltimoreUSA
  4. 4.Leiden Institute of Chemistry, Gorlaeus LaboratoriesLeiden UniversityLeidenThe Netherlands

Personalised recommendations