Advertisement

Journal of Chemical Crystallography

, Volume 39, Issue 9, pp 623–631 | Cite as

Synthesis and Structural Characterization of Substituted Salicylate Titanocene Complexes: Three Supramolecular Frameworks Determined by Weak Interactions

  • Jinling Li
  • Ziwei Gao
  • Caiyun Zhang
  • Lingxiang Gao
Original Paper

Abstract

Based on the reaction between Cp2TiCl2 and substituted salicylic acids in the presence of β-cyclodextrin polymer (β-CDP), three four-coordinated titanocene complexes [(η5-C5H5)2Ti(S,O′)(OCC6H4)·(C6H6)0.5] (1), [(η5-C5H5)2Ti{(O,O′)(3,5-Cl2-OCC6H2)}] (2) and [(η5-C5H5)2Ti{(O,O′)(3,5-(NO2)2-OCC6H2)}] (3) were synthesized in high yields and their crystal structures have been determined by single-crystal X-ray diffraction. The structure of 1 has a Monoclinic space group P21/c with a = 8.313(3) Å, b = 9.960(4) Å, c = 22.330(8) Å, β = 111.856(11)° and Z = 4. The structure of 2 has a Monoclinic space group P21/c with a = 8.0577(13) Å, b = 8.9022(14) Å, c = 21.977(4) Å, β = 96.298(3)° and Z = 4. The structure of 3 has a Triclinic space group P-1 with a = 8.1687(11) Å, b = 8.3027(11) Å, c = 12.7164(17) Å, α = 102.930(2)°, β = 100.479(2)°, γ = 95.458(2)° and Z = 2. Each of the complexes exhibits a three-dimensional framework constructed through weak interactions, which are hydrogen bonding, π–π stacking and C–H···π interactions. It was found that the variation of the substituted salicylate ligands affect the weak interactions as well as the specific framework structure that forms.

Graphical Abstract

Three four-coordinated titanocene complexes [(η5-C5H5)2Ti(S,O′)(OCC6H4)·(C6H6)0.5] (1), [(η5-C5H5)2Ti{(O,O′)(3,5-Cl2-OCC6H2)}] (2) and [(η5-C5H5)2Ti{(O,O′)(3,5-(NO2)2-OCC6H2)}] (3) were synthesized in high yields, each of the complexes exhibits a three-dimensional framework constructed through weak interactions. It was found that simple variation of the substituted salicylate ligands affect the weak interactions as well as the specific framework structure that forms.
.

Keywords

Titanocene Substituted salicylic acid Structure Weak interaction Supramolecular 

Notes

Acknowledgments

The financial support given by the National Natural Science Foundation of China (20771071), the Program for New Century Excellent Talents in University of China and Natural Science Foundation of Shaanxi Province (2007B06) are acknowledged.

References

  1. 1.
    Yaghi OM, Li H, Groy TL (1997) Inorg Chem 36:4292. doi: 10.1021/ic970423a CrossRefGoogle Scholar
  2. 2.
    Cui Y, Ngo HL, Lin WB (2002) Inorg Chem 41:1033. doi: 10.1021/ic015627c CrossRefGoogle Scholar
  3. 3.
    Kil SM, Myunghyun PS (2000) J Am Chem Soc 122:6834. doi: 10.1021/ja000642m CrossRefGoogle Scholar
  4. 4.
    Fujita M, Kwon YJ, Sasaki O, Yamaguchi K, Ogura K (1995) J Am Chem Soc 117:7287. doi: 10.1021/ja00132a046 CrossRefGoogle Scholar
  5. 5.
    Bettencourt-Dias A (2005) Inorg Chem 44:2734. doi: 10.1021/ic048499b CrossRefGoogle Scholar
  6. 6.
    Goodgame DML, Grachvogel DA, Willams DJ (2002) J Chem Soc, Dalton Trans 2259. doi: 10.1039/b202938n
  7. 7.
    Du M, Bu XH, Guo YM, Liu H (2002) Inorg Chem 41:4904. doi: 10.1021/ic025559+ CrossRefGoogle Scholar
  8. 8.
    Zaworotko MJ, Moulton B (2001) Chem Rev 101:1629. doi: 10.1021/cr9900432 CrossRefGoogle Scholar
  9. 9.
    Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, Keeffe MO, Yaghi OM (2001) Acc Chem Res 34:319. doi: 10.1021/ar000034b CrossRefGoogle Scholar
  10. 10.
    MacDonald JC, Whitesides GM (1994) Chem Rev 94:2383. doi: 10.1021/cr00032a007 CrossRefGoogle Scholar
  11. 11.
    Guckian KM, Schweitzer BA, Ren RXF, Sheils CJ, Tahmassebi DC, Kool ET (2000) J Am Chem Soc 122:2213. doi: 10.1021/ja9934854 CrossRefGoogle Scholar
  12. 12.
    Chen CL, Su CY, Cai YP, Zhang HX, Xu AW, Kang BS, Loye HC (2003) Inorg Chem 42:3738. doi: 10.1021/ic0341035 CrossRefGoogle Scholar
  13. 13.
    Nishio M (2004) Cryst Eng Comm 6:130. doi: 10.1039/b313104a Google Scholar
  14. 14.
    Hunks WJ, Jennings MC, Puddephatt RJ (2002) Inorg Chem 41:4590. doi: 10.1021/ic020178h CrossRefGoogle Scholar
  15. 15.
    Ko JW, Min KS, Suh MP (2002) Inorg Chem 41:2151. doi: 10.1021/ic011281u CrossRefGoogle Scholar
  16. 16.
    Noveron JC, Lah MS, Sesto RED, Arif AM, Miller JS, Stang PJ (2002) J Am Chem Soc 124:6613. doi: 10.1021/ja0200241 CrossRefGoogle Scholar
  17. 17.
    Burlakov VV, Troyanov SI, Letov AV, Strunkina LI, Minacheva MK, Furin GG, Rosenthal U, Shur VB (2000) J Organomet Chem 598:243. doi: 10.1016/S0022-328X(99)00716-0 CrossRefGoogle Scholar
  18. 18.
    Bryliakov KP, Babushkin DE, Talsi EP, Voskoboynikov AZ, Gritzo H, Schrőder L, Damrau HRH, Wieser U, Schaper F, Brintzinger HH (2005) Organometallics 24:894. doi: 10.1021/om0492496 CrossRefGoogle Scholar
  19. 19.
    Borrelli M, Busico V, Cipullo R, Ronca S (2002) Macromolecules 35:2835. doi: 10.1021/ma011557h CrossRefGoogle Scholar
  20. 20.
    Takahashi T, Bao FY, Gao GH, Ogasawara M (2003) Org Lett 5:3479. doi: 10.1021/ol035277t CrossRefGoogle Scholar
  21. 21.
    Halterman RL (1992) Chem Rev 92:965. doi: 10.1021/cr00013a011 CrossRefGoogle Scholar
  22. 22.
    Beckhaus R, Sang J, Wagner T, Ganter B (1996) Organometallics 15:1176. doi: 10.1021/om950783a CrossRefGoogle Scholar
  23. 23.
    Halterman RL, Chen ZL, Khan MA (1996) Organometallics 15:3957. doi: 10.1021/om960271b CrossRefGoogle Scholar
  24. 24.
    Harrod JF (2000) Coord Chem Rev 206:493. doi: 10.1016/S0010-8545(00)00335-0 CrossRefGoogle Scholar
  25. 25.
    Mokdsi G, Harding MM (1998) J Organomet Chem 565:29. doi: 10.1016/S0022-328X(98)00441-0 CrossRefGoogle Scholar
  26. 26.
    Kuo LY, Kanatzidis MG, Sabat M, Tipton AL, Tobin JM (1991) J Am Chem Soc 113:9027. doi: 10.1021/ja00024a002 CrossRefGoogle Scholar
  27. 27.
    Harding MM, Mokdsi G, Mackay JP, Prodigalidad M, Lucas SW (1998) Inorg Chem 37:2432. doi: 10.1021/ic971205k CrossRefGoogle Scholar
  28. 28.
    Meléndez E (2002) Crit Rev Oncol Hematol 42:309. doi: 10.1016/S1040-8428(01)00224-4 CrossRefGoogle Scholar
  29. 29.
    Anderberg PI, Harding MM, Luck IJ, Turner P (2002) Inorg Chem 41:1365. doi: 10.1021/ic010876m CrossRefGoogle Scholar
  30. 30.
    Causey PW, Baird MC (2004) Organometallics 23:4486. doi: 10.1021/om049679w CrossRefGoogle Scholar
  31. 31.
    Radim B, Ivana C, Martin P, Ivan P (2004) Appl Organomet Chem 18:262. doi: 10.1002/aoc.623 CrossRefGoogle Scholar
  32. 32.
    Song LC, Han C, Hu QM, Zhang ZP (2004) Inorg Chim Acta 357:2199. doi: 10.1016/j.ica.2003.06.011 CrossRefGoogle Scholar
  33. 33.
    Guo M, Sun H, Bihari S, Parkinson JA, Gould RO, Parsons S, Sadler PJ (2000) Inorg Chem 39:206. doi: 10.1021/ic990669a CrossRefGoogle Scholar
  34. 34.
    Liu FC, Chen KY, Chen JH (2003) Inorg Chem 42:1758. doi: 10.1021/ic020597e CrossRefGoogle Scholar
  35. 35.
    Kirchbauer FG, Pellny PM, Sun H, Burlakov VV, Arndt P, Baumann W, Spannenberg A, Rosenthal U (2001) Organometallics 20:5289. doi: 10.1021/om010404f CrossRefGoogle Scholar
  36. 36.
    Niehues M, Erker G, Kehr G, Schwab P, Frőhlich R (2002) Organometallics 21:2905. doi: 10.1021/om020088k CrossRefGoogle Scholar
  37. 37.
    Wada K, Itayama N, Watanabe N, Bundo M, Kondo T, Mitsudo T (2004) Organometallics 23:5824. doi: 10.1021/om040082q CrossRefGoogle Scholar
  38. 38.
    Thewalt U, Schinnerling P (1991) J Organomet Chem 418:191. doi: 10.1016/0022-328X(91)86366-X CrossRefGoogle Scholar
  39. 39.
    Klein H, Doppert K, Thewalt U (1985) J Organomet Chem 280:203. doi: 10.1016/0022-328X(85)88093-1 CrossRefGoogle Scholar
  40. 40.
    Koepf H, Grabowski S, Voigtlaender R (1981) J Organomet Chem 216:185. doi: 10.1016/S0022-328X(00)85759-9 CrossRefGoogle Scholar
  41. 41.
    Klein HP, Thewalt U, Doppert K, Sanchez-Delgado R (1982) J Organomet Chem 236:189. doi: 10.1016/S0022-328X(00)87074-6 CrossRefGoogle Scholar
  42. 42.
    Guethner T, Thewalt U (1989) J Organomet Chem 371:43. doi: 10.1016/0022-328X(89)85206-4 CrossRefGoogle Scholar
  43. 43.
    Aucott SM, Kilian P, Milton HL, Robertson SD, Slawin AMZ, Woollins JD (2005) Inorg Chem 44:2710. doi: 10.1021/ic048483l CrossRefGoogle Scholar
  44. 44.
    Lu ZR, Gao SQ, Zhou YK, Wu SZ (1994) Chin J Appl Chem 11:28Google Scholar
  45. 45.
    Edwards DA, Mahon MF, Paget TJ, Summerhill NW (2001) Transition Met Chem (Kyoto) 26:116CrossRefGoogle Scholar
  46. 46.
    Gao Z, Sun P, Gao L, Han L, Yuan W, Liu Y, Zhang J, Lv M (2004) Acta Chim Sin 62:979Google Scholar
  47. 47.
    Gao Z, Hu D, Gao L, Zhang X, Zhang Z, Liang Q (2001) J Organomet Chem 629:47. doi: 10.1016/S0022-328X(01)00832-4 CrossRefGoogle Scholar
  48. 48.
    Gao Z (2000) Acta Chim Sin 58:343Google Scholar
  49. 49.
    Gao Z, Zhao X (2003) Polymer (Guildf) 44:4519. doi: 10.1016/S0032-3861(03)00416-6 CrossRefGoogle Scholar
  50. 50.
    Sheldrick GM (1997) SHELX-97, program package for crystal structure solution and refinement. University of Göttingen, GermanyGoogle Scholar
  51. 51.
    Wang J, Zheng C, Maguire JA, Hosmane NS (2003) Organometallics 22:4839. doi: 10.1021/om0340802 CrossRefGoogle Scholar
  52. 52.
    Xu JW, Wang WL, Lai YH (2005) Tetrahedron 61:9248. doi: 10.1016/j.tet.2005.07.071 CrossRefGoogle Scholar
  53. 53.
    Kubicki M (2004) J Mol Struct 698:67. doi: 10.1016/j.molstruc.2004.04.018 CrossRefGoogle Scholar
  54. 54.
    Thallapally PK, Chakraborty K, Carrell HL, Kothab S, Desirajua GR (2000) Tetrahedron 56:6721. doi: 10.1016/S0040-4020(00)00493-2 CrossRefGoogle Scholar
  55. 55.
    Du M, Guo JH, Zhao XJ (2004) J Mol Struct 701:119. doi: 10.1016/j.molstruc.2004.05.027 CrossRefGoogle Scholar
  56. 56.
    Boyle PD, Davidson SE, Godfrey SM, Pritchard RG (2001) Inorg Chim Acta 325:211. doi: 10.1016/S0020-1693(01)00635-1 CrossRefGoogle Scholar
  57. 57.
    Janiak C (2000) J Chem Soc Dalton Trans 3885. doi: 10.1039/b003010o
  58. 58.
    Abrahams BF, Hudson TA, Robson R (2004) J Am Chem Soc 126:8624. doi: 10.1021/ja048293+ CrossRefGoogle Scholar
  59. 59.
    Burlakov VV, Arndt P, Baumann W, Spannenberg A, Rosenthal U, Letov AV, Lyssenko KA, Korlyukov AA, Strunkina LI, Minacheva MK, Shur VB (2001) Organometallics 20:4072. doi: 10.1021/om0103052 CrossRefGoogle Scholar
  60. 60.
    Alekseev NV, Ronova IA (1966) Zh Strukt Khim 7:103Google Scholar
  61. 61.
    Dang Y, Geise HJ, Dommisse R, Esmans E, Desseyn HO (1990) J Organomet Chem 381:333. doi: 10.1016/0022-328X(90)80063-6 CrossRefGoogle Scholar
  62. 62.
    Chandra K, Sharma AK, Garg BS, Singh RP (1980) J Inorg Nucl Chem 42:187. doi: 10.1016/0022-1902(80)80238-7 CrossRefGoogle Scholar
  63. 63.
    Rotzinger FP, Kesselman-Truttmann JM, Hug SJ, Shklover V, Graltze M (2004) J Phys Chem B 108:500. doi: 10.1021/jp0360974 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jinling Li
    • 1
    • 2
  • Ziwei Gao
    • 1
    • 2
  • Caiyun Zhang
    • 1
    • 2
  • Lingxiang Gao
    • 1
    • 2
  1. 1.Key Laboratory of Applied Surface and Colloid ChemistryShaanxi Normal University, Ministry of EducationXi’anPeople’s Republic of China
  2. 2.School of Chemistry & Materials ScienceShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations