Skip to main content
Log in

Synthesis and Structural Characterization of Substituted Salicylate Titanocene Complexes: Three Supramolecular Frameworks Determined by Weak Interactions

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Based on the reaction between Cp2TiCl2 and substituted salicylic acids in the presence of β-cyclodextrin polymer (β-CDP), three four-coordinated titanocene complexes [(η5-C5H5)2Ti(S,O′)(OCC6H4)·(C6H6)0.5] (1), [(η5-C5H5)2Ti{(O,O′)(3,5-Cl2-OCC6H2)}] (2) and [(η5-C5H5)2Ti{(O,O′)(3,5-(NO2)2-OCC6H2)}] (3) were synthesized in high yields and their crystal structures have been determined by single-crystal X-ray diffraction. The structure of 1 has a Monoclinic space group P21/c with a = 8.313(3) Å, b = 9.960(4) Å, c = 22.330(8) Å, β = 111.856(11)° and Z = 4. The structure of 2 has a Monoclinic space group P21/c with a = 8.0577(13) Å, b = 8.9022(14) Å, c = 21.977(4) Å, β = 96.298(3)° and Z = 4. The structure of 3 has a Triclinic space group P-1 with a = 8.1687(11) Å, b = 8.3027(11) Å, c = 12.7164(17) Å, α = 102.930(2)°, β = 100.479(2)°, γ = 95.458(2)° and Z = 2. Each of the complexes exhibits a three-dimensional framework constructed through weak interactions, which are hydrogen bonding, π–π stacking and C–H···π interactions. It was found that the variation of the substituted salicylate ligands affect the weak interactions as well as the specific framework structure that forms.

Graphical Abstract

Three four-coordinated titanocene complexes [(η5-C5H5)2Ti(S,O′)(OCC6H4)·(C6H6)0.5] (1), [(η5-C5H5)2Ti{(O,O′)(3,5-Cl2-OCC6H2)}] (2) and [(η5-C5H5)2Ti{(O,O′)(3,5-(NO2)2-OCC6H2)}] (3) were synthesized in high yields, each of the complexes exhibits a three-dimensional framework constructed through weak interactions. It was found that simple variation of the substituted salicylate ligands affect the weak interactions as well as the specific framework structure that forms.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yaghi OM, Li H, Groy TL (1997) Inorg Chem 36:4292. doi:10.1021/ic970423a

    Article  CAS  Google Scholar 

  2. Cui Y, Ngo HL, Lin WB (2002) Inorg Chem 41:1033. doi:10.1021/ic015627c

    Article  CAS  Google Scholar 

  3. Kil SM, Myunghyun PS (2000) J Am Chem Soc 122:6834. doi:10.1021/ja000642m

    Article  Google Scholar 

  4. Fujita M, Kwon YJ, Sasaki O, Yamaguchi K, Ogura K (1995) J Am Chem Soc 117:7287. doi:10.1021/ja00132a046

    Article  CAS  Google Scholar 

  5. Bettencourt-Dias A (2005) Inorg Chem 44:2734. doi:10.1021/ic048499b

    Article  Google Scholar 

  6. Goodgame DML, Grachvogel DA, Willams DJ (2002) J Chem Soc, Dalton Trans 2259. doi:10.1039/b202938n

  7. Du M, Bu XH, Guo YM, Liu H (2002) Inorg Chem 41:4904. doi:10.1021/ic025559+

    Article  CAS  Google Scholar 

  8. Zaworotko MJ, Moulton B (2001) Chem Rev 101:1629. doi:10.1021/cr9900432

    Article  Google Scholar 

  9. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, Keeffe MO, Yaghi OM (2001) Acc Chem Res 34:319. doi:10.1021/ar000034b

    Article  CAS  Google Scholar 

  10. MacDonald JC, Whitesides GM (1994) Chem Rev 94:2383. doi:10.1021/cr00032a007

    Article  CAS  Google Scholar 

  11. Guckian KM, Schweitzer BA, Ren RXF, Sheils CJ, Tahmassebi DC, Kool ET (2000) J Am Chem Soc 122:2213. doi:10.1021/ja9934854

    Article  CAS  Google Scholar 

  12. Chen CL, Su CY, Cai YP, Zhang HX, Xu AW, Kang BS, Loye HC (2003) Inorg Chem 42:3738. doi:10.1021/ic0341035

    Article  CAS  Google Scholar 

  13. Nishio M (2004) Cryst Eng Comm 6:130. doi:10.1039/b313104a

    CAS  Google Scholar 

  14. Hunks WJ, Jennings MC, Puddephatt RJ (2002) Inorg Chem 41:4590. doi:10.1021/ic020178h

    Article  CAS  Google Scholar 

  15. Ko JW, Min KS, Suh MP (2002) Inorg Chem 41:2151. doi:10.1021/ic011281u

    Article  CAS  Google Scholar 

  16. Noveron JC, Lah MS, Sesto RED, Arif AM, Miller JS, Stang PJ (2002) J Am Chem Soc 124:6613. doi:10.1021/ja0200241

    Article  CAS  Google Scholar 

  17. Burlakov VV, Troyanov SI, Letov AV, Strunkina LI, Minacheva MK, Furin GG, Rosenthal U, Shur VB (2000) J Organomet Chem 598:243. doi:10.1016/S0022-328X(99)00716-0

    Article  CAS  Google Scholar 

  18. Bryliakov KP, Babushkin DE, Talsi EP, Voskoboynikov AZ, Gritzo H, Schrőder L, Damrau HRH, Wieser U, Schaper F, Brintzinger HH (2005) Organometallics 24:894. doi:10.1021/om0492496

    Article  CAS  Google Scholar 

  19. Borrelli M, Busico V, Cipullo R, Ronca S (2002) Macromolecules 35:2835. doi:10.1021/ma011557h

    Article  CAS  Google Scholar 

  20. Takahashi T, Bao FY, Gao GH, Ogasawara M (2003) Org Lett 5:3479. doi:10.1021/ol035277t

    Article  CAS  Google Scholar 

  21. Halterman RL (1992) Chem Rev 92:965. doi:10.1021/cr00013a011

    Article  CAS  Google Scholar 

  22. Beckhaus R, Sang J, Wagner T, Ganter B (1996) Organometallics 15:1176. doi:10.1021/om950783a

    Article  CAS  Google Scholar 

  23. Halterman RL, Chen ZL, Khan MA (1996) Organometallics 15:3957. doi:10.1021/om960271b

    Article  CAS  Google Scholar 

  24. Harrod JF (2000) Coord Chem Rev 206:493. doi:10.1016/S0010-8545(00)00335-0

    Article  Google Scholar 

  25. Mokdsi G, Harding MM (1998) J Organomet Chem 565:29. doi:10.1016/S0022-328X(98)00441-0

    Article  CAS  Google Scholar 

  26. Kuo LY, Kanatzidis MG, Sabat M, Tipton AL, Tobin JM (1991) J Am Chem Soc 113:9027. doi:10.1021/ja00024a002

    Article  CAS  Google Scholar 

  27. Harding MM, Mokdsi G, Mackay JP, Prodigalidad M, Lucas SW (1998) Inorg Chem 37:2432. doi:10.1021/ic971205k

    Article  CAS  Google Scholar 

  28. Meléndez E (2002) Crit Rev Oncol Hematol 42:309. doi:10.1016/S1040-8428(01)00224-4

    Article  Google Scholar 

  29. Anderberg PI, Harding MM, Luck IJ, Turner P (2002) Inorg Chem 41:1365. doi:10.1021/ic010876m

    Article  CAS  Google Scholar 

  30. Causey PW, Baird MC (2004) Organometallics 23:4486. doi:10.1021/om049679w

    Article  CAS  Google Scholar 

  31. Radim B, Ivana C, Martin P, Ivan P (2004) Appl Organomet Chem 18:262. doi:10.1002/aoc.623

    Article  Google Scholar 

  32. Song LC, Han C, Hu QM, Zhang ZP (2004) Inorg Chim Acta 357:2199. doi:10.1016/j.ica.2003.06.011

    Article  CAS  Google Scholar 

  33. Guo M, Sun H, Bihari S, Parkinson JA, Gould RO, Parsons S, Sadler PJ (2000) Inorg Chem 39:206. doi:10.1021/ic990669a

    Article  CAS  Google Scholar 

  34. Liu FC, Chen KY, Chen JH (2003) Inorg Chem 42:1758. doi:10.1021/ic020597e

    Article  CAS  Google Scholar 

  35. Kirchbauer FG, Pellny PM, Sun H, Burlakov VV, Arndt P, Baumann W, Spannenberg A, Rosenthal U (2001) Organometallics 20:5289. doi:10.1021/om010404f

    Article  CAS  Google Scholar 

  36. Niehues M, Erker G, Kehr G, Schwab P, Frőhlich R (2002) Organometallics 21:2905. doi:10.1021/om020088k

    Article  CAS  Google Scholar 

  37. Wada K, Itayama N, Watanabe N, Bundo M, Kondo T, Mitsudo T (2004) Organometallics 23:5824. doi:10.1021/om040082q

    Article  CAS  Google Scholar 

  38. Thewalt U, Schinnerling P (1991) J Organomet Chem 418:191. doi:10.1016/0022-328X(91)86366-X

    Article  CAS  Google Scholar 

  39. Klein H, Doppert K, Thewalt U (1985) J Organomet Chem 280:203. doi:10.1016/0022-328X(85)88093-1

    Article  CAS  Google Scholar 

  40. Koepf H, Grabowski S, Voigtlaender R (1981) J Organomet Chem 216:185. doi:10.1016/S0022-328X(00)85759-9

    Article  CAS  Google Scholar 

  41. Klein HP, Thewalt U, Doppert K, Sanchez-Delgado R (1982) J Organomet Chem 236:189. doi:10.1016/S0022-328X(00)87074-6

    Article  CAS  Google Scholar 

  42. Guethner T, Thewalt U (1989) J Organomet Chem 371:43. doi:10.1016/0022-328X(89)85206-4

    Article  CAS  Google Scholar 

  43. Aucott SM, Kilian P, Milton HL, Robertson SD, Slawin AMZ, Woollins JD (2005) Inorg Chem 44:2710. doi:10.1021/ic048483l

    Article  CAS  Google Scholar 

  44. Lu ZR, Gao SQ, Zhou YK, Wu SZ (1994) Chin J Appl Chem 11:28

    CAS  Google Scholar 

  45. Edwards DA, Mahon MF, Paget TJ, Summerhill NW (2001) Transition Met Chem (Kyoto) 26:116

    Article  CAS  Google Scholar 

  46. Gao Z, Sun P, Gao L, Han L, Yuan W, Liu Y, Zhang J, Lv M (2004) Acta Chim Sin 62:979

    CAS  Google Scholar 

  47. Gao Z, Hu D, Gao L, Zhang X, Zhang Z, Liang Q (2001) J Organomet Chem 629:47. doi:10.1016/S0022-328X(01)00832-4

    Article  CAS  Google Scholar 

  48. Gao Z (2000) Acta Chim Sin 58:343

    CAS  Google Scholar 

  49. Gao Z, Zhao X (2003) Polymer (Guildf) 44:4519. doi:10.1016/S0032-3861(03)00416-6

    Article  CAS  Google Scholar 

  50. Sheldrick GM (1997) SHELX-97, program package for crystal structure solution and refinement. University of Göttingen, Germany

    Google Scholar 

  51. Wang J, Zheng C, Maguire JA, Hosmane NS (2003) Organometallics 22:4839. doi:10.1021/om0340802

    Article  CAS  Google Scholar 

  52. Xu JW, Wang WL, Lai YH (2005) Tetrahedron 61:9248. doi:10.1016/j.tet.2005.07.071

    Article  CAS  Google Scholar 

  53. Kubicki M (2004) J Mol Struct 698:67. doi:10.1016/j.molstruc.2004.04.018

    Article  CAS  Google Scholar 

  54. Thallapally PK, Chakraborty K, Carrell HL, Kothab S, Desirajua GR (2000) Tetrahedron 56:6721. doi:10.1016/S0040-4020(00)00493-2

    Article  CAS  Google Scholar 

  55. Du M, Guo JH, Zhao XJ (2004) J Mol Struct 701:119. doi:10.1016/j.molstruc.2004.05.027

    Article  CAS  Google Scholar 

  56. Boyle PD, Davidson SE, Godfrey SM, Pritchard RG (2001) Inorg Chim Acta 325:211. doi:10.1016/S0020-1693(01)00635-1

    Article  CAS  Google Scholar 

  57. Janiak C (2000) J Chem Soc Dalton Trans 3885. doi:10.1039/b003010o

  58. Abrahams BF, Hudson TA, Robson R (2004) J Am Chem Soc 126:8624. doi:10.1021/ja048293+

    Article  CAS  Google Scholar 

  59. Burlakov VV, Arndt P, Baumann W, Spannenberg A, Rosenthal U, Letov AV, Lyssenko KA, Korlyukov AA, Strunkina LI, Minacheva MK, Shur VB (2001) Organometallics 20:4072. doi:10.1021/om0103052

    Article  CAS  Google Scholar 

  60. Alekseev NV, Ronova IA (1966) Zh Strukt Khim 7:103

    CAS  Google Scholar 

  61. Dang Y, Geise HJ, Dommisse R, Esmans E, Desseyn HO (1990) J Organomet Chem 381:333. doi:10.1016/0022-328X(90)80063-6

    Article  CAS  Google Scholar 

  62. Chandra K, Sharma AK, Garg BS, Singh RP (1980) J Inorg Nucl Chem 42:187. doi:10.1016/0022-1902(80)80238-7

    Article  CAS  Google Scholar 

  63. Rotzinger FP, Kesselman-Truttmann JM, Hug SJ, Shklover V, Graltze M (2004) J Phys Chem B 108:500. doi:10.1021/jp0360974

    Article  Google Scholar 

Download references

Acknowledgments

The financial support given by the National Natural Science Foundation of China (20771071), the Program for New Century Excellent Talents in University of China and Natural Science Foundation of Shaanxi Province (2007B06) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwei Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Gao, Z., Zhang, C. et al. Synthesis and Structural Characterization of Substituted Salicylate Titanocene Complexes: Three Supramolecular Frameworks Determined by Weak Interactions. J Chem Crystallogr 39, 623–631 (2009). https://doi.org/10.1007/s10870-009-9537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-009-9537-9

Keywords

Navigation