Skip to main content
Log in

Spectroscopic Investigation on the Formation of a Dinuclear Me2SO–Ru2-Mercaptopyridine Bridged Complex: [Ru2Cl3(μ-pyS)(μ-dmso)(dmso)4] · 2H2O

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A dinuclear ruthenium(II) complex double-bridged by an N-aromatic ligand 2-mercaptopyridine (2-pyridinethiol or 2-pyridyl mercaptan) and a methyl sulfoxide (dmso) have been characterized by X-ray crystallography. The reported compound with formula [Ru2Cl3(μ-pyS)(μ-dmso)(dmso)4] · 2H2O, [C15H36Cl3NO7S6Ru2] (P2/c, a = 13.8175(2) Å, b = 10.5608(2) Å, c = 21.3544(3) Å, β = 106.090(1)°, V = 2,994.05(8) Å3, Z = 4) represents a seven-membered ring system with both rutheniums in an octahedral geometry. All the hydrogen bonds (C–H–Cl) and the van der Waals contacts give rise to three-dimensional network in the structure and add stability to the dinuclear compound. To our knowledge, this is the first time that the formation of a dinuclear ruthenium(II) complex double-bridged by an N-aromatic ligand 2-mercaptopyridine and dmso have been reported. The study also provided valuable insight into bioinorganic chemistry as continuing efforts are being made to develop metal-based cancer chemotherapeutics. A major feature of this paper is the resolution of a double bridged ruthenium structure which contributes to a better understanding of ruthenium reactivity.

Index Abstract

A major feature of this paper is the resolution of a double bridged ruthenium structure which contributes to a better understanding of ruthenium reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sava G, Bergamo A (2007) Dalton Trans 13:1267

    Google Scholar 

  2. Groessl M, Reisner E, Hartinger CG, Eichinger R, Semenova O, Timerbaev AR, Jakupec MA, Arion VB, Keppler BJ (2007) Med Chem 50:2185. doi:10.1021/jm061081y

    Article  CAS  Google Scholar 

  3. de Paula QA, Batista AA, Nascimento OR, Costa-Filho AJ, Schultz MS, Bonfadini MR, Oliva GJ (2000) Braz Chem Soc 11:530

    Google Scholar 

  4. Paula QA, Batista AA, Castellano EE, Ellena JJ (2002) Inorg Biochem 90:144. doi:10.1016/S0162-0134(02)00409-9

    Article  CAS  Google Scholar 

  5. Vock CA, Ang WH, Scolaro C, Phillips AD, Lagopoulos L, Juillerat-Jenneret L, Sava G, Scopelliti R, Dyson PJ (2007) J Med Chem 50:2166. doi:10.1021/jm070039f

    Article  CAS  Google Scholar 

  6. Timerbaev AR, Hartinger CG, Aleksenko SS, Keppler BK (2006) Chem Rev 106:2224. doi:10.1021/cr040704h

    Article  CAS  Google Scholar 

  7. Alessio E (2004) Chem Rev 104:4203. doi:10.1021/cr0307291

    Article  CAS  Google Scholar 

  8. Pieper T, Borsky K, Keppler BK (1999) In: Clarke MJ, Sadler PJ (eds) Metallopharmaceuticals I—DNA interactions. Springer, Europe, London/UK, pp 171–199

    Google Scholar 

  9. Sava G, Giraldi T, Mestroni G, Zassinovich G (1983) Chem Biol Interact 45:1. doi:10.1016/0009-2797(83)90037-6

    Article  CAS  Google Scholar 

  10. Bacac M, Hotze ACG, van der Schilden K, Haasnoot JG, Pacor S, Alessio E, Sava G, Reedijk J (2004) J Inorg Biochem 98:402. doi:10.1016/j.jinorgbio.2003.12.003

    Article  CAS  Google Scholar 

  11. Bergamo A, Stocco G, Gava B, Cocchietto M, Alessio E, Serli B, Iengo E, Sava G (2003) J Pharmacol Exp Ther 305:725. doi:10.1124/jpet.102.047803

    Article  CAS  Google Scholar 

  12. Velders AH, Bergamo A, Alessio E, Zangrando E, Haasnoot JG, Casarsa C, Cocchiero M, Zorzet S, Sava G (2004) J Med Chem 47:1110. doi:10.1021/jm030984d

    Article  CAS  Google Scholar 

  13. Bergamo A, Stocco G, Casarca C, Cocchietto M, Alessio E, Barbara S, Zorzet S, Sava G (2004) Int J Oncol 24:373

    CAS  Google Scholar 

  14. Keppler BK, Henn M, Juhl UM, Berger MR, Niebel R, Wagner FE (1989) In: Clarke MJ (ed) Ruthenium and other non-platinum metal complexes in cancer chemotherapy. Springer-Verlag, Heidelberg, p 142

    Google Scholar 

  15. Clarke MJ, Zhu F, Frasca DR (1999) Chem Rev 99:2511. doi:10.1021/cr9804238

    Article  CAS  Google Scholar 

  16. Bear JL, Han B, Kadish KM (1996) Inorg Chem 35:3012. doi:10.1021/ic950864z

    Article  CAS  Google Scholar 

  17. Bear JL, Li Y, Kadish KM (1996) Inorg Chem 35:3053. doi:10.1021/ic9509600

    Article  CAS  Google Scholar 

  18. Bear JL, Li Y, Kadish KM (1997) Inorg Chem 36:5449. doi:10.1021/ic9602658

    Article  CAS  Google Scholar 

  19. Dunbar KP, Matonic JH, Saharan VP, Crawford CA, Christou GJ (1994) Am Chem Soc 116:2201. doi:10.1021/ja00084a093

    Article  CAS  Google Scholar 

  20. Silva DO (1990) Thesis, “Estrutura e reatividade de sulfóxidos de rutênio com bases heterocíclicas nitrogenadas”, São Paulo University

  21. Enraf-Nonius (1997–2000) COLLECT. Nonius BV, Delft

  22. Otwinowski Z, Minor W (1997) In: Carter CW Jr, Sweet RM (eds) HKL Denzo and Scalepack, processing of X-Ray diffraction data collected in oscillation mode, methods in enzymology, macromolecular crystallography part A, 276. Academic Press, New York, pp 307–326

    Google Scholar 

  23. Sheldrick GM (1997) SHELXS-97. Program for crystal structure resolution. University of Göttingen, Göttingen

    Google Scholar 

  24. Sheldrick GM (1997) SHELXL-97. Program for crystal structures analysis. University of Göttingen, Göttingen

    Google Scholar 

  25. Farrugia LJ (1997) Ortep3 for windows. J Appl Cryst 30:565. doi:10.1107/S0021889897003117

    Article  CAS  Google Scholar 

  26. Tanase T, Aiko T, Yamamoto Y (1996) Chem Comm 20:2341

  27. von Poelhsitz G, Batista AA, Castellano EE, Ellena J (2006) Inorg Chem Commun 9:773. doi:10.1016/j.inoche.2006.04.028

    Article  Google Scholar 

  28. Sokolov M, Sasaki Y, Umakoshi K (2001) Inorg Chem Commun 4:142. doi:10.1016/S1387-7003(01)00143-5

    Article  CAS  Google Scholar 

  29. Pauling L (1960) The nature of the chemical bound. Cornell University Press Publishers, New York

    Google Scholar 

  30. Penfold BR (1953) Acta Crystallogr 6:707. doi:10.1107/S0365110X5300199X

    Article  CAS  Google Scholar 

  31. Aullón G, Bellamy D, Orpen G, Brammer L, Bruton EA (1998) Chem Comm 6:653

  32. Pantaléon-Baldovino O, Morales-Morales D (2007) Cryst Growth Des 7:117–123. doi:10.1021/cg0606388

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Brazilian financial agencies CNPq (Conselho Nacional de Pesquisa e Desenvolvimento), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and, FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo). They kindly acknowledge K. Harding for the suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Queite Antônia de Paula.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Paula, Q.A., Santos, S.d., Ellena, J. et al. Spectroscopic Investigation on the Formation of a Dinuclear Me2SO–Ru2-Mercaptopyridine Bridged Complex: [Ru2Cl3(μ-pyS)(μ-dmso)(dmso)4] · 2H2O. J Chem Crystallogr 39, 519–524 (2009). https://doi.org/10.1007/s10870-009-9514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-009-9514-3

Keywords

Navigation