Advertisement

Journal of Chemical Crystallography

, Volume 39, Issue 6, pp 423–427 | Cite as

Crystal Structure of Antitubercular Complex: cis-(chloro)-[N,N′-bis-(diethyl-2,2′-bipyridine-3,3′-dicarboxylate)]ruthenium(II) Monohydrate

  • Loic Toupet
  • Pierre H. Dixneuf
  • Mehmet Akkurt
  • Maria Daoudi
  • Najat Sam
  • Abdelali Kerbal
  • Zahid H. Chohan
  • Taibi Ben Hadda
Original Paper

Abstract

Diethyl-2,2′-bipyridine-3,3′-dicarboxylate (3 or L) reacts with RuCl3 · 3H2O to give cis-(Cl)-[Ru(L)2Cl2] · H2O (4) and structure of the complex was determined by spectral (IR, 1H-NMR), and mass spectroscopic data, elemental analyses and X-ray crystallography. The structure is solved in triclinic, space group p-1 with a = 10.658 (2), b = 12.446 (3), c = 14.186 (5) Å, α = 104.856 (3), β = 108.704 (3), γ = 94.973 (2)°, V = 1693.2 (8) Å3, Z = 2 with final R = 0.012. The geometry of the complex is shown to be a distorted octahedral with four nitrogens of two 2,2′-bipyridyl ligands in two different planes with Ru–N distance as 2.021 (2)−2.071 (3) Å. The cis-position is occupied by two chloride atoms with Ru–Cl distance as 2.4156 (12) and 2.4167 (13) Å. The trans-axial Cl2–Ru1–N and Cl1–Ru1–N4 angles are respectively, 172.42 (7) and 174.12 (7)°. A weak hydrogen bonding is observed between the two chlorides and hydrogens of neighbouring molecule [C–H···Cl distance as 2.72, 2.77 (4) Å]. A second type of weak hydrogen bonding is also observed between the oxygens of carboxylate groups and hydrogens of a neighbouring molecule [C–H···O distance as 2.53, 2.56 and 2.34 (4) Å].

Graphical Abstract

The structure of anti-tubercular precursor complexes, cis-(chloro)-[N,N′-bis-(diethyl-2,2′-bipyridine-3,3′-dicarboxylate)]ruthenium(II) monohydrate is solved by single crystal X-ray diffraction analysis which reveals geometry of the complex to be a distorted octahedral with four nitrogens of two 2,2′-bipyridyl ligands in two different planes. The cis-position is occupied by two chloride atoms.

Keywords

Diethyl-2,2′-bipyridine-3,3′-dicarboxylate Crystal structure Ruthenium(II) 

Notes

Acknowledgments

N. Sam and M. Daoudi are grateful to the ‘Projet Globale de Recherche de l’Université Mohammed Premier’ and ‘PROTARS I’ project for financial support.

References

  1. 1.
    Cole Hamilton DJ (1980) J Chem Soc Chem Commun 1213. doi: 10.1039/c39800001213
  2. 2.
    Choudhury D, Cole Hamilton DJ (1982) J Chem Soc Dalton Trans 1985Google Scholar
  3. 3.
    Tanaka K, Morimoto M, Tanaka T (1983) Chem Lett 901. doi: 10.1246/cl.1983.901
  4. 4.
    Ishida M, Tanaka K, Morimoto M, Tanaka T (1986) Organometallics 5724Google Scholar
  5. 5.
    Haasnoot JG, Hinrichs W, Weir O, Vos JG (1986) Inorg Chem 25:1440. doi: 10.1021/ic00243a018 CrossRefGoogle Scholar
  6. 6.
    Che C-M, Leung W-H (1987) J Chem Soc Chem Commun 1376. doi: 10.1039/c39870001376
  7. 7.
    Goldstein AS, Drago RS (1991) J Chem Soc Chem Commun 21. doi: 10.1039/c39910000021
  8. 8.
    Collomb-Dunand-Sautier N, Deronzier A, Ziessel R (1994) Inorg Chem 33:2961. doi: 10.1021/ic00091a040 CrossRefGoogle Scholar
  9. 9.
    Ishida M, Fujicki K, Omba T, Ohkubo K, Tanaka K, Terada T, Tanaka T (1990) J Chem Soc Dalton Trans 2155. doi: 10.1039/dt9900002155
  10. 10.
    Ishida M, Tanaka K, Tanaka T (1987) Organometallics 6:181. doi: 10.1021/om00144a033 CrossRefGoogle Scholar
  11. 11.
    Morgan JL, Buck DP, Turley AG, Collins JG, Keene FR (2006) Inorg Chim Acta 3(359):888. doi: 10.1016/j.ica.2005.06.036 CrossRefGoogle Scholar
  12. 12.
    Wu B-Y, Gao Li-H, Duan Z-M, Wang K-Z (2005) J Inorg Biochem 3(99):1685. doi: 10.1016/j.jinorgbio.2005.05.012 CrossRefGoogle Scholar
  13. 13.
    Liu Y-J, Chao H, Tan L-F, Yuan Y-X, Wei W, Ji L-N (2005) J Inorg Biochem 2(99):530. doi: 10.1016/j.jinorgbio.2004.10.030 CrossRefGoogle Scholar
  14. 14.
    Ju H-X, Ye Y-K, Zha J-H, Zhu Y-L (2003) Anal Biochem 2(313):255. doi: 10.1016/S0003-2697(02)00625-5 CrossRefGoogle Scholar
  15. 15.
    Mazumder UK, Gupta M, Karki SS, Bhattacharya S, Rathinasamy S, Sivakumar T (2005) Bioorg Med Chem 13(20):5766. doi: 10.1016/j.bmc.2005.05.047 CrossRefGoogle Scholar
  16. 16.
    Ben Hadda T, Sam N, Le Bozec H, Dixneuf PH (1999) Inorg Chem Commun 2(10):460. doi: 10.1016/S1387-7003(99)00112-4 CrossRefGoogle Scholar
  17. 17.
    Hadda TB, Akkurt M, Baba MF, Daoudi M, Bennani B, Kerbal A, Chohan ZH (2008) Anti-tubercular Activity of Ruthenium(II) Complexes with Polypyridines. J Enzyme Inhib Med Chem 1–7. doi: 10.1080/14756360802188628
  18. 18.
    Fair CK (1990) MolEN. An interactive intelligent system for crystal structure analysis. Enraf-Nonius, DelftGoogle Scholar
  19. 19.
    Spek AL (1997) HELENA. Program for the handling of CAD4-Diffractometer output SHELX(S/L). Utrecht University, UtrechtGoogle Scholar
  20. 20.
    Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Cryst 32:115. doi: 10.1107/S0021889898007717 CrossRefGoogle Scholar
  21. 21.
    Sheldrick GM (1997) SHELXL97. Program for the refinement of crystal structures. University of Göttingen, GermanyGoogle Scholar
  22. 22.
    Fujihara T, Kobayashi A, Iwai M, Nagasawa A (2004) Acta Crystallogr E60:m1172–m1174Google Scholar
  23. 23.
    Eckhard IF, Summers LA (1973) Aust J Chem 26:2727Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Loic Toupet
    • 1
  • Pierre H. Dixneuf
    • 1
  • Mehmet Akkurt
    • 2
  • Maria Daoudi
    • 3
  • Najat Sam
    • 4
  • Abdelali Kerbal
    • 3
  • Zahid H. Chohan
    • 5
  • Taibi Ben Hadda
    • 4
  1. 1.Laboratoire de Chimie de Coordination et Catalyse (CNRS UMR 6509)Université de Rennes 1Rennes CedexFrance
  2. 2.Department of Physics, F.A.SErciyes UniversityKayseriTurkey
  3. 3.Laboratoire de Chimie Organique, Faculté des Sciences Dhar El MehrazFezMorocco
  4. 4.Laboratoire de Chimie des Matériaux, Faculté des SciencesOujdaMorocco
  5. 5.Department of ChemistryBahauddin Zakariya UniversityMultanPakistan

Personalised recommendations