Skip to main content
Log in

Crystal Structure of Antitubercular Complex: cis-(chloro)-[N,N′-bis-(diethyl-2,2′-bipyridine-3,3′-dicarboxylate)]ruthenium(II) Monohydrate

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Diethyl-2,2′-bipyridine-3,3′-dicarboxylate (3 or L) reacts with RuCl3 · 3H2O to give cis-(Cl)-[Ru(L)2Cl2] · H2O (4) and structure of the complex was determined by spectral (IR, 1H-NMR), and mass spectroscopic data, elemental analyses and X-ray crystallography. The structure is solved in triclinic, space group p-1 with a = 10.658 (2), b = 12.446 (3), c = 14.186 (5) Å, α = 104.856 (3), β = 108.704 (3), γ = 94.973 (2)°, V = 1693.2 (8) Å3, Z = 2 with final R = 0.012. The geometry of the complex is shown to be a distorted octahedral with four nitrogens of two 2,2′-bipyridyl ligands in two different planes with Ru–N distance as 2.021 (2)−2.071 (3) Å. The cis-position is occupied by two chloride atoms with Ru–Cl distance as 2.4156 (12) and 2.4167 (13) Å. The trans-axial Cl2–Ru1–N and Cl1–Ru1–N4 angles are respectively, 172.42 (7) and 174.12 (7)°. A weak hydrogen bonding is observed between the two chlorides and hydrogens of neighbouring molecule [C–H···Cl distance as 2.72, 2.77 (4) Å]. A second type of weak hydrogen bonding is also observed between the oxygens of carboxylate groups and hydrogens of a neighbouring molecule [C–H···O distance as 2.53, 2.56 and 2.34 (4) Å].

Graphical Abstract

The structure of anti-tubercular precursor complexes, cis-(chloro)-[N,N′-bis-(diethyl-2,2′-bipyridine-3,3′-dicarboxylate)]ruthenium(II) monohydrate is solved by single crystal X-ray diffraction analysis which reveals geometry of the complex to be a distorted octahedral with four nitrogens of two 2,2′-bipyridyl ligands in two different planes. The cis-position is occupied by two chloride atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cole Hamilton DJ (1980) J Chem Soc Chem Commun 1213. doi:10.1039/c39800001213

  2. Choudhury D, Cole Hamilton DJ (1982) J Chem Soc Dalton Trans 1985

  3. Tanaka K, Morimoto M, Tanaka T (1983) Chem Lett 901. doi:10.1246/cl.1983.901

  4. Ishida M, Tanaka K, Morimoto M, Tanaka T (1986) Organometallics 5724

  5. Haasnoot JG, Hinrichs W, Weir O, Vos JG (1986) Inorg Chem 25:1440. doi:10.1021/ic00243a018

    Article  Google Scholar 

  6. Che C-M, Leung W-H (1987) J Chem Soc Chem Commun 1376. doi:10.1039/c39870001376

  7. Goldstein AS, Drago RS (1991) J Chem Soc Chem Commun 21. doi:10.1039/c39910000021

  8. Collomb-Dunand-Sautier N, Deronzier A, Ziessel R (1994) Inorg Chem 33:2961. doi:10.1021/ic00091a040

    Article  Google Scholar 

  9. Ishida M, Fujicki K, Omba T, Ohkubo K, Tanaka K, Terada T, Tanaka T (1990) J Chem Soc Dalton Trans 2155. doi:10.1039/dt9900002155

  10. Ishida M, Tanaka K, Tanaka T (1987) Organometallics 6:181. doi:10.1021/om00144a033

    Article  CAS  Google Scholar 

  11. Morgan JL, Buck DP, Turley AG, Collins JG, Keene FR (2006) Inorg Chim Acta 3(359):888. doi:10.1016/j.ica.2005.06.036

    Article  Google Scholar 

  12. Wu B-Y, Gao Li-H, Duan Z-M, Wang K-Z (2005) J Inorg Biochem 3(99):1685. doi:10.1016/j.jinorgbio.2005.05.012

    Article  Google Scholar 

  13. Liu Y-J, Chao H, Tan L-F, Yuan Y-X, Wei W, Ji L-N (2005) J Inorg Biochem 2(99):530. doi:10.1016/j.jinorgbio.2004.10.030

    Article  Google Scholar 

  14. Ju H-X, Ye Y-K, Zha J-H, Zhu Y-L (2003) Anal Biochem 2(313):255. doi:10.1016/S0003-2697(02)00625-5

    Article  Google Scholar 

  15. Mazumder UK, Gupta M, Karki SS, Bhattacharya S, Rathinasamy S, Sivakumar T (2005) Bioorg Med Chem 13(20):5766. doi:10.1016/j.bmc.2005.05.047

    Article  CAS  Google Scholar 

  16. Ben Hadda T, Sam N, Le Bozec H, Dixneuf PH (1999) Inorg Chem Commun 2(10):460. doi:10.1016/S1387-7003(99)00112-4

    Article  CAS  Google Scholar 

  17. Hadda TB, Akkurt M, Baba MF, Daoudi M, Bennani B, Kerbal A, Chohan ZH (2008) Anti-tubercular Activity of Ruthenium(II) Complexes with Polypyridines. J Enzyme Inhib Med Chem 1–7. doi:10.1080/14756360802188628

  18. Fair CK (1990) MolEN. An interactive intelligent system for crystal structure analysis. Enraf-Nonius, Delft

    Google Scholar 

  19. Spek AL (1997) HELENA. Program for the handling of CAD4-Diffractometer output SHELX(S/L). Utrecht University, Utrecht

    Google Scholar 

  20. Altomare A, Burla MC, Camalli M, Cascarano GL, Giacovazzo C, Guagliardi A, Moliterni AGG, Polidori G, Spagna R (1999) J Appl Cryst 32:115. doi:10.1107/S0021889898007717

    Article  CAS  Google Scholar 

  21. Sheldrick GM (1997) SHELXL97. Program for the refinement of crystal structures. University of Göttingen, Germany

    Google Scholar 

  22. Fujihara T, Kobayashi A, Iwai M, Nagasawa A (2004) Acta Crystallogr E60:m1172–m1174

    Google Scholar 

  23. Eckhard IF, Summers LA (1973) Aust J Chem 26:2727

    CAS  Google Scholar 

Download references

Acknowledgments

N. Sam and M. Daoudi are grateful to the ‘Projet Globale de Recherche de l’Université Mohammed Premier’ and ‘PROTARS I’ project for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahid H. Chohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toupet, L., Dixneuf, P.H., Akkurt, M. et al. Crystal Structure of Antitubercular Complex: cis-(chloro)-[N,N′-bis-(diethyl-2,2′-bipyridine-3,3′-dicarboxylate)]ruthenium(II) Monohydrate. J Chem Crystallogr 39, 423–427 (2009). https://doi.org/10.1007/s10870-008-9495-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-008-9495-7

Keywords

Navigation