Advertisement

Structural and Morphological Characterization of Pt/WO x –ZrO2 Catalysts

  • A. M. Garrido Pedrosa
  • D. M. A. Melo
  • M. J. B. Souza
  • A. S. Araujo
  • S. H. Lima
  • M. A. F. Melo
  • J. M. Sasaki
Original Paper
  • 213 Downloads

Abstract

Catalysts of Pt/WO x –ZrO2 type with 1 wt% of Pt and 10, 15 and 20 wt% of tungsten were synthesized and characterized. The structural and morphological features of these catalysts were studied. The samples were synthesized by impregnation method and calcined at 600 °C, 700 °C and 800 °C. The characterizations were carried out using different techniques: X-ray diffraction, Raman spectroscopy, scanning electronic microscopy, nitrogen adsorption measurement and refinement of their crystalline structures by Rietveld method. X-ray diffraction patterns revealed the formation ZrO2 and WO3 crystalline structures and its crystallite size were determined. The zirconium oxide crystallized into tetragonal and monoclinic phases and tungsten trioxide crystallized into monoclinic phase. Crystalline WO3 and amorphous WO x species were detected by Raman spectra.

Index Abstract

Catalysts of Pt/WO x –ZrO2 type with 1 wt% of Pt and 10, 15 and 20 wt% of tungsten were synthesized and characterized. The structural and morphological features of these catalysts were studied. The samples were synthesized by impregnation method and calcined at 600 °C, 700 °C and 800 °C. The characterizations were carried out using different techniques: X-ray diffraction, Raman spectroscopy, scanning electronic microscopy, nitrogen adsorption measurement and refinement of their crystalline structures by Rietveld method. X-ray diffraction patterns revealed the formation ZrO2 and WO3 crystalline structures and its crystalline size were determined. The zirconium oxide crystallized into tetragonal and monoclinic phases and tungsten trioxide crystallized into monoclinic phase. Crystalline WO3 and amorphous WO x species were detected by Raman spectra. Open image in new window

Keywords

Pt/WOx–ZrO2 catalysts Raman spectroscopy Rietveld method 

Notes

Acknowledgments

The authors would like to express their gratitude to the Conselho Nacional de Desenvolvimento Científico e Tecnologico (CNPq) for its financial support, to S. A. Junior (UFPE/DQTE, Brazil) by Raman analysis and to CTPETRO-INFRA and FINEP/LIEM by SEM analysis.

References

  1. 1.
    Arata K, Hino M (1990) Mater Chem Phys 26:213–237CrossRefGoogle Scholar
  2. 2.
    Barton DG, Soled SL, Meitzner GD, Fuentes GA, Iglesia E (1999) J Catal 181:57–72CrossRefGoogle Scholar
  3. 3.
    Barton DG, Shtein M, Wilson RD, Soled SL, Iglesia E (1999) J Phys Chem B 103:630–640CrossRefGoogle Scholar
  4. 4.
    Garrido Pedrosa AM, Souza MJB, Marinkovic BA, Melo DMA, Araujo AS (2008) Appl Catal A Gen 342:56–62CrossRefGoogle Scholar
  5. 5.
    Boyse RA, Ko EI (1997) J Catal 171:191–207CrossRefGoogle Scholar
  6. 6.
    Valigi M, Gazzoli D, Pettiti I, Maattei G, Colonna S, Rossi S, Ferraris G (2002) Appl Catal A Gen 231:159–172CrossRefGoogle Scholar
  7. 7.
    Gregorio FD, Keller V (2004) J Catal 225:45–55CrossRefGoogle Scholar
  8. 8.
    Iglesia E, Barton DG, Soled SL, Miseo S, Baumgartner J, Gates WE, Fuentes GA, Meitzner GD (1996) Stud Surf Sci Catal 101:533–542CrossRefGoogle Scholar
  9. 9.
    Hino M, Arata KJ (1988) J Chem Soc Chem Commun 18:1259–1260CrossRefGoogle Scholar
  10. 10.
    Vaudagna SR, Comeli RA, Figoli NS (1997) Appl Catal A Gen 164:265–280CrossRefGoogle Scholar
  11. 11.
    Santiesteban JG, Vartuli JC, Han S, Bastian RD, Chang CD (1997) J Catal 168:431–441CrossRefGoogle Scholar
  12. 12.
    Sun W, Xu L, Chu Y, Shi W (2003) J Colloid Interf Sci 266:99–106CrossRefGoogle Scholar
  13. 13.
    Melezhyk OV, Prudius SV, Brei VV (2001) Microporous Mesoporous Mater 49:39–44CrossRefGoogle Scholar
  14. 14.
    Tani E, Yoshimura M, Somiya S (1983) J Am Ceram 66:11CrossRefGoogle Scholar
  15. 15.
    Garrido Pedrosa AM, Souza MJB, Lima SH, Melo DMA, Souza AG, Araujo AS (2007) J Therm Anal Calorim 87:703–707CrossRefGoogle Scholar
  16. 16.
    Vaudagna SR, Canavese SA, Comeli RA, Figoli NS (1998) Appl Catal A Gen 168:93–111CrossRefGoogle Scholar
  17. 17.
    Young RA, Sakthivel A, Moss TS, Paiva-Santos COJ (1995) Appl Crystallogr 28:366CrossRefGoogle Scholar
  18. 18.
    West AR (1999) Basic solid state chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  19. 19.
    Punnoose A, Seehra MS, Wender I (2001) Fuel Process Technol 74:33–47CrossRefGoogle Scholar
  20. 20.
    Figueras F, Palomeque J, Loridnt S, Feche C, Essayem N, Gelbrd G (2004) J Catal 226:25–31CrossRefGoogle Scholar
  21. 21.
    Lajavardi M, Kenney DJ, Lin SH (2000) J Chin Chem Soc 47:1043–1053Google Scholar
  22. 22.
    Canton P, Fagherazzi G, Frattini R, Riello P (1999) J Appl Cryst 32:475–480CrossRefGoogle Scholar
  23. 23.
    Wang DN, Guo YO, Liang KM, Tao K (1999) Sci China Ser A Math Phys Astron 42:80–86CrossRefGoogle Scholar
  24. 24.
    Haglund J, Guillermet AF, Grimvall G, Korling M (1993) Phys Rev B 48:11685–11691CrossRefGoogle Scholar
  25. 25.
    Vogt T, Woodward PM, Hunter BA (1999) J Solid State Chem 144:209–215CrossRefGoogle Scholar
  26. 26.
    Hill RJ, Howard CJ (1987) J Appl Cryst 20:467–474CrossRefGoogle Scholar
  27. 27.
    Zhao B, Xu X, Gao J, Fu Q, Tang Y (1996) Raman Spectrosc 27:549CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. M. Garrido Pedrosa
    • 1
  • D. M. A. Melo
    • 1
  • M. J. B. Souza
    • 2
  • A. S. Araujo
    • 1
  • S. H. Lima
    • 1
  • M. A. F. Melo
    • 1
  • J. M. Sasaki
    • 3
  1. 1.Department of ChemistryFederal University of Rio Grande do NorteNatalBrazil
  2. 2.Department of Chemical EngineeringFederal University of SergipeSao CristovaoBrazil
  3. 3.Department of PhysicsFederal University of CearáFortalezaBrazil

Personalised recommendations