Journal of Chemical Crystallography

, Volume 37, Issue 12, pp 847–852 | Cite as

Synthesis, Properties, and Crystal Structures of Copper(II) Di-(2-picolyl)amine Complexes Containing Inorganic Salts

  • Ki-Young Choi
  • Bo-Ra Kim
  • Jaejung Ko
Original Paper


These complexes have been characterized by X-ray crystallography, spectroscopic, and cyclic voltammetry. In 1, the copper(II) ion has a distorted square-pyramidal geometry with three nitrogen atoms of the dpa ligand and two oxygen atoms of the nitrate anions. The crystal structure of 2 shows that the copper(II) ions are bridged by tp anion to form a dinuclear complex, in which each copper(II) ion exhibits a distorted square-pyramid with three nitrogen atoms of the dpa ligand, water molecule, and the oxygen atom of the bridging tp ligand. Cyclic voltammetric data indicate that 1 undergoes irreversible one-electron oxidation to the CuIII and reversible one-electron reduction to the CuI, while 2 gives one reversible oxidation and two reversible and irreversible reduced processes. The electronic spectra and redox potentials of the complexes are influenced significantly by the anionic ligands.

Graphical Abstract

The reaction of [Cu(dpa)Cl2] with K(NO3)2 and Na2tp yields mononuclear and dinuclear copper(II) complexes [Cu(dpa)(NO3)2] (1) and [Cu2(dpa)2(H2O)2(μ-tp)](tp)·6H2O (2) (dpa = di-(2-picolyl)amine, tp = terephthalate).


Crystal structures Di-(2-picolyl)amine Mononuclear copper(II) complex Dinuclear copper(II) complexes Distorted square-pyramidal geometry 



This study was financially supported by Kongju National University in the 2007 Star Project Program.


  1. 1.
    Johnson DK, Murphy TB, Rose NJ, Goodwin WH, Pickart L (1982) Inorg Chim Acta 67:159CrossRefGoogle Scholar
  2. 2.
    Pickart L, Goodwin WH, Burgua W, Murphy TB, Johnson DK (1983) Biochem Pharmacol 32:3868CrossRefGoogle Scholar
  3. 3.
    Young MJ, Wahnon D, Hynes RC, Chin JJ (1995) Am Chem Soc 117:9441CrossRefGoogle Scholar
  4. 4.
    Whitener GD, Hagadorn JR, Arnold JJ (1999) Chem Soc Dalton Trans 1249Google Scholar
  5. 5.
    Holland PL, Tolman WB (1999) Coord Chem Rev 190:855CrossRefGoogle Scholar
  6. 6.
    Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563CrossRefGoogle Scholar
  7. 7.
    Marsh WE, Hatfield WE, Hodgson DJ (1982) Inorg Chem 21:2679CrossRefGoogle Scholar
  8. 8.
    Takizawa S, Somei H, Jayaprakash D, Sasai H (2003) Angew Chem Int Ed 42:5711CrossRefGoogle Scholar
  9. 9.
    Sung N-D, Choi K-Y, Lee H-H, Lee K-C, Kim M-J (2005) Transit Met Chem 30:273CrossRefGoogle Scholar
  10. 10.
    Choi K-Y, Ryu H, Sung N-D, Suh MJ (2003) Chem Crystallogr 33:947CrossRefGoogle Scholar
  11. 11.
    Cortes R, Lezama L, Ruiz de Larramendi JI, Madariaga G, Luis Mesa J, Javier Zuniga F, Rojo T (1995) Inorg Chem 34:778CrossRefGoogle Scholar
  12. 12.
    Shi X-S, Liu C-S, Li J-R, Guo Y, Zhou J-N, Bu X-H (2005) J Mol Struct 754:71CrossRefGoogle Scholar
  13. 13.
    Sheldrick GM (1996) SADABS. University of Göttingen, GermanyGoogle Scholar
  14. 14.
    Sheldrick GM (1990) Acta Crystallogr A46:467Google Scholar
  15. 15.
    Sheldrick GM (1997) SHELXL-97, Program for the refinement of crystal structures. University of Göttingen, GermanyGoogle Scholar
  16. 16.
    Addison AW, Rao TN, Reedijik J, van Rijin J, Verschoor GC (1984) J Chem Soc Dalton Trans 1349Google Scholar
  17. 17.
    Cano J, De Munno G, Sanz JL, Ruiz R, Faus J, Lioret F, Julve M, Caneschi A (1997) J Chem Soc Dalton Trans 1915Google Scholar
  18. 18.
    Deacon GB, Phillips RJ (1980) Coord Chem Rev 33:227CrossRefGoogle Scholar
  19. 19.
    Bakalbassis EG, Mrozinski J, Tsipis CA (1986) Inorg Chem 25:3684CrossRefGoogle Scholar
  20. 20.
    Hathaway BJ (1991) Struct Bonding Berl 57:2801Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Chemistry EducationKongju National UniversityKongjuRepublic of Korea
  2. 2.Department of Material ChemistryKorea UniversityChochiwonRepublic of Korea

Personalised recommendations