Advertisement

Journal of Chemical Crystallography

, Volume 37, Issue 3, pp 219–231 | Cite as

The co-crystal of iron(II) complex hydrate with hydroxybenzoic acid: [Fe(Phen)3]Cl(p-hydroxybenzoate).2(p-hydroxybenzoic acid).7H2O

  • Michael J. Zaworotko
  • Hassan H. Hammud
  • Victor Ch. Kravtsov
Article

Crystal of [Fe(Phen)3]Cl(PHB).2(PHBH).7H2O (1) is triclinic, space group P-1 with a = 12.0388(11) Å, b = 15.5286(14) Å, c = 15.7794(14) Å, α = 89.759(2)°, β = 75.818(2)°, γ = 71.900(2)° and Z = 2, (phen = phenanthroline, PHBH = p-hydroxybenzoic acid, PHB = p-hydroxybenzoate anion). The phen in adjacent Fe(phen)3 2+ cations are π–π interacted forming offset face to face (OFF) motifs. Juxtaposition of four phen ligands from two cations encapsulate an R2 2(8) dimeric unit of H-bonded PHBH molecules within a centrosymmetric box froming a filled aryl box motif (FAB). Alternation of OFF and FAB motifs form {OFF⋯FAB}∞ strands. The Fe(phen)3 2+ cation engages its phen ligands in π–π and/or CH–π interactions with two crystalographically different PHBH molecules and one PHB anion. Seven water molecules and a chloride anion per iron(II) trisphenanthroline cation fill empty spaces in the structure forming a hydrophilic cluster. Extensive intermolecular H-bond interactions occur between water molecules, chloride anions, PHBH molecules, and PHB anions. Thermal analysis of (1) was done under N2(g). The TG, and dTG curves revealed the expected mass losses. All associated processes are endothermic as shown in the DSC curve.

KEY WORDS

Iron(II) trisphenanthroline p-hydroxybenzoic acid p-hydroxybenzoate anion OFF motif filled aryl box π–π CH–π interaction H–bond 1–D chain thermal analysis 

Notes

Acknowledgment

Thanks to University of South Florida, Tampa for X-ray facilities.

References

  1. 1.
    Barton, J.K. Science 1986, 233, 727.CrossRefGoogle Scholar
  2. 2.
    Naing, K.; Takashani, M.; Tanigchi, M.; Yamagishi, A. Inorg. Chem. 1995, 34, 350.CrossRefGoogle Scholar
  3. 3.
    Zelenko, O.; Gallagher, J.; Sigman, D.S. Angew. Chem. Int. Ed. Engl 1997, 36(24) 2776.CrossRefGoogle Scholar
  4. 4.
    Sammes, P.C.; Yahioglu, G. Chem. Soc. Rev. 1994, 327.Google Scholar
  5. 5.
    Sigman, D.; Graham, D.R.; D’Aurora, V.; Stern, A.M. J. Biol. Chem. 1979, 254(12) 269.Google Scholar
  6. 6.
    Liu, F.; Wang, K.; Bai, G.; Zhang, Y.; Gao, L. Inorg. Chem. 2004, 43, 1799.CrossRefGoogle Scholar
  7. 7.
    Mie, H.Y.; Barton, J.K. J. Am. Chem. Soc. 1986, 108, 7414.CrossRefGoogle Scholar
  8. 8.
    Zhabotinskii, A.M.; Rovinskii, A.B. Theor. Exp. Chem. 1979, 15, 25.Google Scholar
  9. 9.
    Noyes, R.M. J. Am. Chem. Soc. 1980, 102, 4644.CrossRefGoogle Scholar
  10. 10.
    Ganathisubramanian, N.; Noyes, R.M. J. Phys. Chem. 1982, 86, 5158.CrossRefGoogle Scholar
  11. 11.
    Kovalenko, A.S.; Tikhonova, L.P.; Roizman, O.M.; Protopov, E.V. Theor. Exp. Chem. 1980, 16, 46.CrossRefGoogle Scholar
  12. 12.
    Jwo, J.J.; Noyes, R.M. J. Am. Chem. Soc. 1975, 97, 5422.CrossRefGoogle Scholar
  13. 13.
    Smoes, M.L. J. Chem. Phys. 1979, 79, 4669.CrossRefGoogle Scholar
  14. 14.
    Shakhashiri, B.Z, Gordon, B.Z. J. Am. Chem. Soc. 1969, 91, 1103.CrossRefGoogle Scholar
  15. 15.
    Singh, C.M.; Mishra, H.C.; Upadnyyay, R.N. J. Indian chem. Soc. 1979, 56, 835.Google Scholar
  16. 16.
    Yatsimirskii, K.B.; Tikhonova, L.P. Coord. Chem. Rev. 1985, 63, 241.CrossRefGoogle Scholar
  17. 17.
    Beck, M.T. Coord. Chem. Rev. 1968, 3, 91CrossRefGoogle Scholar
  18. 18.
    Johansson, L. Chem. Scr. 1976, 9, 30Google Scholar
  19. 19.
    Johansson, L. Chem. Scr. 1976, 10, 72Google Scholar
  20. 20.
    Johansson, L. Chem. Scr. 1976, 10, 149Google Scholar
  21. 21.
    Deng, R.M.K.; Simon, S.; Dillon, K.B.; Goeta, A.E. Acta Cryst. 2001, C57, 4.Google Scholar
  22. 22.
    Johansson, L.; Molund, M.; Oskarsson, A. Inorg. Chim. Acta 1978, 31, 117.CrossRefGoogle Scholar
  23. 23.
    Baker, J.; Engelhardt, L.M.; Figgis, B.N.; White, A.H. J. C. S. Dalton 1975, 530.Google Scholar
  24. 24.
    Russell, V.; Scudder, M.; Dance, I. J. Chem. Soc., Dalton Trans. 2001, 789.Google Scholar
  25. 25.
    Fujiwara, T.; Iwamoto, E.; Yamamoto, Y. Inorg. Chem. 1984, 23, 115,CrossRefGoogle Scholar
  26. 26.
    Dance, I.G. The Crystal as a Supramolecular Entity ed. G.R. Desiraju, John Willey, New York, 1996; pp 137–333.Google Scholar
  27. 27.
    Horn, C.; Scudder, M.L.; Dance, I.G. Cryst Eng Comm 2000, 2(36) 196.Google Scholar
  28. 28.
    Koh, L.L.; Xu, Y.; Hsieh, A.K.; Song, B.; Wu, F.; Ji, L. Acta Cryst. 1994, C50, 884.Google Scholar
  29. 29.
    Zalkin, A.; Templeton, D.H.; Ueki, T. Inorg. Chem. 1973, 12, 1641.CrossRefGoogle Scholar
  30. 30.
    Li, J.; Wei, J.; Wu, X.; Zhu, N.; Zhang, Y. Cryst. Res. Technol. 1993, 28, 11.CrossRefGoogle Scholar
  31. 31.
    Han, Q.; Jian, F.; Lu, L.; Yang, X.; Wang, X. J. Coord. Chem. 2002, 55(6) 633.CrossRefGoogle Scholar
  32. 32.
    Boys, D.; Escobar, C.; Wittke, O. Acta Cryst. 1984, C40, 1359.Google Scholar
  33. 33.
    Anderson, P.O. J. Chem. Soc., Dalton Trans. 1973, 1237.Google Scholar
  34. 34.
    Deacon, G.B.; Raston, C.L.; Tunaley, D.; White, A.H. Aust. J. Chem. 1979, 32, 2195.CrossRefGoogle Scholar
  35. 35.
    Goodwin, H.A.; Kepert, D.L.; Patrick, J.M.; Skelton, B.W.; White, A.H. Aust. J. Chem. 1984, 34, 1817.CrossRefGoogle Scholar
  36. 36.
    Rund, J.V. Acta Cryst. 1980, B36, 3103.Google Scholar
  37. 37.
    Li, J.; Wei, J.; Wu, X.; Zhu, N.; Zhang, Y. Cryst. Res. Technol. 1993, 28, 11.CrossRefGoogle Scholar
  38. 38.
    Jorgensen, W.L.; Severance, D.L. J. Am. Chem. Soc. 1990, 112, 4768.CrossRefGoogle Scholar
  39. 39.
    Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885.Google Scholar
  40. 40.
    Claessens, C.G.; Stoddart, J.F. J. Phys. Org. Chem. 1997, 10, 254.CrossRefGoogle Scholar
  41. 41.
    Kabbani, A.T.; Zaworotko, M.J.; Abourahma, H.; Walsh, R.D.; Hammud, H.H. J. Chem. Crystallogr. 2004, 34(11) 749.CrossRefGoogle Scholar
  42. 42.
    Horn, C.; Dance, I.G.; Scudder, M.I. Cryst Eng Comm. 2001, 3(2), 9.Google Scholar
  43. 43.
    Horn, C.; Berben, L.; Chow, H.; Scudder, M.I.; Dance, I.G. Cryst Eng Comm. 2002, 4(2), 7.Google Scholar
  44. 44.
    Sundholm, D.; Sundberg, M.R.; Uggla, R. J. Phys. Chem. A. 1998, 102(36), 7137.CrossRefGoogle Scholar
  45. 45.
    Suezawa, H.; Hashimoto, T.; Tsuchinaga, K.; Yuzuri, T.; Sakakibara, K.; Hirota, M.; Nishio, M. J. Chem. Soc., Perkin Trans. 2000, 2, 1243.Google Scholar
  46. 46.
    Umezawa, Y.; Tsuboyama, S.; Honda, K.; Uzawa, J.; Nishio, M.; Bull. Chem. Soc. Jpn. 1998, 71, 1207.CrossRefGoogle Scholar
  47. 47.
    Takahashi, O.; kohomo, Y.; Iwasaki, S.; Saito, K.; Iwaoka, M.; Tomoda, S.; Umezawa, Y.; Tsuboyama, S.; Nishio, M. Bull. Chem. Soc. Jpn. 2001, 74, 2421CrossRefGoogle Scholar
  48. 48.
    Suezawa, H.; Yoshida, T.; Umezawa, Y.; Tsuboyama, S.; Nishio, M. Eur. J. Inorg. Chem. 2002, 3148.Google Scholar
  49. 49.
    Steiner, T.; Desiraju, G.R. Chem. Commun. 1998, 891.Google Scholar
  50. 50.
    Dubler, E.; Haring, U.K; Scheller, H.; Baltzer, P.; Sigel, H. Inorg. Chem. 1984, 23, 3785.CrossRefGoogle Scholar
  51. 51.
    Bogdanovic, G.A.; Spasojevic-de Brie, A.; Zaric, S.D. Eur. J. Inorg. Chem. 2002, 1599.Google Scholar
  52. 52.
    Nishio, M. Cryst Eng Comm 2004, 6(27), 130.Google Scholar
  53. 53.
    Tsuzuki, S.; Honda, K.; Uchimaru, T.; Mikami, M.; Tanabe, K. J. Am. Chem. Soc. 2002, 124, 104.CrossRefGoogle Scholar
  54. 54.
    Grover, J.R.; Walters, E.A.; Hui, E.T. J. Phys. Chem. 1987 91, 3233.CrossRefGoogle Scholar
  55. 55.
    Lehn, J.-M. Supramolecular Chemistry: Concept and Perspectives; VCH: Weinheim, 1995; pp 89–135.Google Scholar
  56. 56.
    Glidewell, C.; Howie, R.A.; Low, J.N.; Skakle, J.M.S.; Wardell, S.V.; Wardell, J.L. Acta Crystallogr. 2002, B58, 864.Google Scholar
  57. 57.
    Tong, M-L.; Li, W.; Chen, X-M.; Zheng, S-L.; Ng, S.W. Acta Crystallogr. 2002, C58, m232.Google Scholar
  58. 58.
    Garden, S.J.; Fontes, S.P.; Wardell, J.L.; Skakle, J.M.S.; Low, J.N.; Glidewell, C. Acta Crystallogr. 2002, B58, 701.Google Scholar
  59. 59.
    Hartshorn, C.M.; Steel, P. J. Inorg. Chem. 1996, 35, 6902.CrossRefGoogle Scholar
  60. 60.
    Cozzi, F; Siegel, J.S. Pure Appl. Chem. 1995, 67, 683.Google Scholar
  61. 61.
    Horn, C.; Ali, B.F.; Dance, I.G.; Scudder, M.L.; Craig, D.C. Cryst Eng Comm. 2000, 2, 6.Google Scholar
  62. 62.
    Lindsey, J.S. New. J. Chem. 1991, 15, 153.Google Scholar
  63. 63.
    Braga, D.; Grepioni, F.; Desiraju, G.R. Chem. Rev. 1998, 98, 1375.CrossRefGoogle Scholar
  64. 64.
    Konig, E.; Ritter, G.; Kulshreshia, S.K. Chem. Rev. 1985, 85, 219.CrossRefGoogle Scholar
  65. 65.
    Konig, E. Prog. Inorg. Chem. 1987, 35, 527.Google Scholar
  66. 66.
    Kamalakshmi, D.; Reddy, K.R.N.; Padmavathy, D.; Rajasekharam, M.V.; Arulsamy, N.; Hodgson, D.J. Inorg. Chim. Acta 1999, 284, 158.CrossRefGoogle Scholar
  67. 67.
    George, T.A.; Hammud, H.H.; Isber, S. Poyhedron 2006, 25, 2721.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Michael J. Zaworotko
    • 1
  • Hassan H. Hammud
    • 2
  • Victor Ch. Kravtsov
    • 3
  1. 1.Department of ChemistryUniversity of South FloridaTampaUSA
  2. 2.Chemistry DepartmentBeirut Arab UniversityBeirutLebanon
  3. 3.Institute of Applied PhysicsAcademy of Sciences of MoldovaKishinevMoldova

Personalised recommendations