Journal of Chemical Crystallography

, Volume 36, Issue 12, pp 841–849 | Cite as

Hydrogen bonding in proton-transfer compounds of 5-sulfosalicylic acid with ortho-substituted monocyclic heteroaromatic Lewis bases

  • Graham Smith
  • Urs D. Wermuth
  • Peter C. Healy

The crystal structures of the 1:1 proton-transfer compounds of 5-sulfosalicylic acid with the ortho-substituted monocyclic heteroaromatic Lewis bases, 2-aminopyridine, 2-hydroxypyridine and 2-aminopyrimidine, viz. 2-aminopyridinium 5-sulfosalicylate (1), 2-hydroxypyridinium 5-sulfosalicylate monohydrate (2) and 2-aminopyrimidinium 5-sulfosalicylate monohydrate (3) have been determined and their hydrogen-bonding patterns described. All compounds are monoclinic, space group P21/c, with Z=4 in cells with dimensions a=7.898(5), b=11.159(11), c=14.912(7) Å, β=96.849(11)° (1);=7.260(2), b=15.292(3), c=12.615(2) Å, β=102.45(5)° (2) and a=7.0430(7), b=12.1871(16), c=16.2825(12) Å, β=101.364(7)° (3). All three compounds show some molecular disorder, in 1 within the cation species and with both 2 and 3, a similar rotational disorder in the anion sulfonate group. Hydrogen bonding in all three compounds together with significant cation-anion or cation-cation inter-ring π–π interactions generate three-dimensional layered polymer structures.


5-Sulfosalicylic acid proton-transfer compounds heteroaromatic lewis bases hydrogen bonding 



The authors acknowledge financial support from the School of Physical and Chemical Sciences (Queensland University of Technology) and the School of Science, Griffith University.


  1. 1.
    Attig, R.; Mootz, D. Acta Crystallogr. 1977, B 33, 2422.Google Scholar
  2. 2.
    Aliev, Z.G.; Atovmyan, L.L.; Ukshe, A.E. Zh. Strukt. Khim. 1995, 36, 947.Google Scholar
  3. 3.
    Attig, R.; Williams, J.M. J. Chem. Phys. 1977, 66, 1389.CrossRefGoogle Scholar
  4. 4.
    Mootz, D.; Fayos, J. Acta Crystallogr. 1970, B 26, 2046.Google Scholar
  5. 5.
    Merschenz-Quack, A.; Mootz, D. Acta Crystallogr. 1990, C 46, 1478.Google Scholar
  6. 6.
    Bakasova, Z.B.; Abdybaliev, D.A.; Sharipov, Kh. T.; Akbaev, A.A.; Ibragimov, B.T.; Talipov, S.A.; Ismankulov, A.I. Uzb. Khim. Zh. 1991, pp. 22–25.Google Scholar
  7. 7.
    Smith, G.; Wermuth, U.D.; White, J.M. Acta Crystallogr. 2005, C 61, o105.Google Scholar
  8. 8.
    Smith, G.; Wermuth, U.D.; White, J.M. Acta Crystallogr. 2005, E 61, o313.Google Scholar
  9. 9.
    Smith, G. Acta Crystallogr. 2005, E 61, o3398.Google Scholar
  10. 10.
    Smith, G.; Wermuth, U.D.; Healy, P.C. Acta Crystallogr. 2006, E 62, o1863.Google Scholar
  11. 11.
    Smith, G.; Wermuth, U.D.; Healy, P.C. Acta Crystallogr. 2005, C 61, o555.Google Scholar
  12. 12.
    Muthiah, P.J.; Hemamalini, M.; Bocelli, G.; Cantoni, A. Acta Crystallogr. 2003, C 59, o2015.Google Scholar
  13. 13.
    Smith, G.; Wermuth, U.D.; White, J.M. Acta Crystallogr. 2004, C 60, o575.Google Scholar
  14. 14.
    Fan, S.-R.; Xiao, H.-P.; Zhu, L.-G. Acta Crystallogr. 2005, E 61, o253.Google Scholar
  15. 15.
    Madarasz, J.; Bombicz, P.; Jarmi, K.; Ban, M.; Pokol, G.; Gal, S. J. Therm. Anal. Calorim. 2002, 69, 281.CrossRefGoogle Scholar
  16. 16.
    Raj, S.B.; Sethuraman, V.; Francis, S.; Hemamalini, M.; Muthiah, P.T.; Bocelli, G.; Cantoni, A.; Rychlewska, U.; Warzajtis, B. Cryst. Eng. Comm. 2003, 5, 70.Google Scholar
  17. 17.
    Hemamalini, M.; Muthiah, P.J.; Sridhar, B.; Rajaram, R.K. Acta Crystallogr. 2005, E 61, o1480.Google Scholar
  18. 18.
    Zhang, X.-L.; Chen, X.-M.; Ng, S.W. Acta Crystallogr. 2004, E 60, o453.Google Scholar
  19. 19.
    Gao, S.; Huo, L.-H.; Ng, S.W. Acta Crystallogr. 2004, E 60, o2197.Google Scholar
  20. 20.
    Smith, G.; Wermuth, U.D.; Healy, P.C. Acta Crystallogr. 2004, E 60, o687.Google Scholar
  21. 21.
    Etter, M.C.; Adsmond, D.A. J. Chem. Soc., Chem. Commun. 1990, 589.Google Scholar
  22. 22.
    Lynch, D.E.; Smith, G.; Freney, D.; Byriel, K.A.; Kennard, C.H.L. Aust. J. Chem. 1994, 47, 1097.CrossRefGoogle Scholar
  23. 23.
    Smith, G.; Gentner, J.M.; Lynch, D.E.;.Byriel, K.A.; Kennard, C.H.L. Aust. J. Chem. 1995, 48, 1151.CrossRefGoogle Scholar
  24. 24.
    Byriel, K.A.; Kennard, C.H.L.; Lynch, D.E.; Smith, G.; Thompson, J.G. Aust. J. Chem. 1992, 45, 969.CrossRefGoogle Scholar
  25. 25.
    Lynch, D.E.; Latif, T.; Smith, G.; Byriel, K.A.; Kennard, C.H.L. J. Chem. Crystallogr. 1997, 27, 567.Google Scholar
  26. 26.
    Smith, G.; Bott, R.C.; Wermuth, U.D. Acta Crystallogr. 2000, C 56, 1505.Google Scholar
  27. 27.
    Buyükgüngör, O.; Odabasoglu, M.; Albayrak, C.; Lönnecki, P. Acta Crystallogr. 2004, C 60, o470.Google Scholar
  28. 28.
    Haynes, D.A.; Chisholm, J.A.; Jones, W.; Motherwell, W.D.S. Cryst. Eng. Comm. 2004, 6, 584.CrossRefGoogle Scholar
  29. 29.
    Allen, F.H.; Raithby, P.R.; Shields, G.P.; Taylor, R. Chem. Commun. 1998, 1034.Google Scholar
  30. 30.
    Altomare, A.; Cascarno, G.; Giocovasso, C.; Guagliardi, A.; Burla, M.C.; Polidori, G.; Camalli, M. J. Appl. Crystallogr. 1994, 27, 435.Google Scholar
  31. 31.
    Sheldrick, G.M.: SHELXL 97: Program for Crystal Structure Refinement, University of Göttingen, Germany.Google Scholar
  32. 32.
    TeXsan for Windows: Structure Analysis Software. Version 1.06, 1999. Molecular Structure Corporation, New Trails Drive, The Woodlands, TX77381, USA.Google Scholar
  33. 33.
    Spek, A.L. PLATON: A Multipurpose Crystallographic Tool. J. Appl. Crystallogr. 2003, 36, 7.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Graham Smith
    • 1
  • Urs D. Wermuth
    • 2
  • Peter C. Healy
    • 2
  1. 1.School of Physical and Chemical SciencesQueensland University of TechnologyBrisbaneAustralia
  2. 2.School of ScienceGriffith University, NathanBrisbaneAustralia

Personalised recommendations