Journal of Chemical Crystallography

, Volume 37, Issue 2, pp 81–86 | Cite as

Synthesis and structure of a novel copper (II) nitrate complex of 2,4-dioxo-4-phenylbutanoic acid

  • Brian R. Landry
  • Mark M. Turnbull
  • Brendan Twamley

2,4-Dioxo-4-phenylbutanoic acid, 1, was synthesized as a biproduct of the attempted synthesis of 1,6-bisphenyl-1,3,4,6-hexanetetrone. Crystals of [Cu(H2O)(bipy) (L)][Cu(bipy)(L)(NO3)] (H2O)(NO3) (L = 2,4-dioxolato-4-phenylbutanoic acid and bipy = 2,2′-bipyridine), 2, were grown by slow evaporation of a solution of Cu(NO3)2·3 H2O, 2,2′-bipyridine, and 1 in a mixture of ethanol and water. The compound crystallized in the triclinic space group P-1 and is made up of two distinct molecular units each with approximately square pyramidal geometry: a = 10.663(2) Å, b = 13.275(3) Å, c = 15.071(3) Å, α = 80.26(3)°, β = 74.13(3)°, γ = 89.12(3)°. The copper ions are chelated by molecules of 1 and molecules of bipyridine. The molecular units are arrayed in rows held together by pi-stacking interactions and hydrogen bonding.


Copper(II) Acac analog Dioxophenylbutanoic acid 



Financial support from Pfizer (BRL) is greatly appreciated. Some tools from the Open Source Physics project were used in writing a program to calculate CSM values for the complexes. Open Source Physics code is available online at A program, CSM, for determining coordination geometries is available free of charge to academic users upon request from the authors.


  1. 1.
    Cramer, R.E.; Cramer, S.W.; Chudgk, M.A.; Seff, K. Inorg. Chem. 1977, 16, 219.CrossRefGoogle Scholar
  2. 2.
    Prasad, R.N.; Agrawal, M.; George, R. Syn. React. Inorg. Met. 2004, 34(5), 943.CrossRefGoogle Scholar
  3. 3.
    Sing, N.; Kushawaha, S.K.; Srivastava, A.; Sodhi, A. Syn. React. Inorg. Met. 2002, 32(10), 1743.CrossRefGoogle Scholar
  4. 4.
    Youngme, S.; van Albada, G.A.; Chaichit, N.; Gunnasoot, P.; Kongsaeree, P.; Mutikainen, I.; Roubeau, O.; Reedijk, J.; Turpeinen, U. Inorg. Chim. Acta. 2003, 353, 119.CrossRefGoogle Scholar
  5. 5.
    Smekal, Z.; Langer, V.; Wrzeszcz, G.; Klasova, P. J. Coord. Chem. 2002, 55(5), 595.CrossRefGoogle Scholar
  6. 6.
    Cowan, P.J.; Rathke, M.W. Syn. Comm. 1983, 13, 183.CrossRefGoogle Scholar
  7. 7.
    SHELXTL/PC, Siemens Corp. 1990.Google Scholar
  8. 8.
    SADABS: v.2.01, An empirical absorption correction program, Bruker AXS Inc.. Madison, WI, 2001.Google Scholar
  9. 9.
    Sheldrick, G.M. SHELXL97-2. Programs for the Solution and Refinement of Crystal Structures. University of Göttingen, Germany, 1997.Google Scholar
  10. 10.
    Pinsky, M.; Avnir, D. Inorg. Chem. 1998, 37, 5575.CrossRefGoogle Scholar
  11. 11.
    Zhang, L.; Xu, D.; Xu, Y.; Gu, J. Acta Cryst. C 1997, 53, 299.CrossRefGoogle Scholar
  12. 12.
    Otieno, T.; Pinkston, A.T.; Johnson, N.C.; Parkin, S. Acta Cryst. E 2002, 58, m328.CrossRefGoogle Scholar
  13. 13.
    Amaral, S.; Turnbull, M.M. J. Chem. Cryst. 2002, 32, 11.CrossRefGoogle Scholar
  14. 14.
    Ojelund, G.; Wadso, I. Acta Chem. Scand. 1967, 21(6), 1408.CrossRefGoogle Scholar
  15. 15.
    Kees, K.L.; Caggiano, T.J.; Steiner, K.E.; Fitzgerald, J.J., Jr.; Kates, M.J.; Christos, T.E.; Kulishoff, J.M.; Moore, R.D.; McCaleb, M.L. J. Med. Chem. 1995, 38, 617.CrossRefGoogle Scholar
  16. 16.
    Hornback, J.M. Organic Chemistry. Wadsworth Group, Belmont, CA, 1998.Google Scholar
  17. 17.
    Aliev, Z.G.; Shurov, S.N.; Nekrasov, D.D.; Podvintsev, I.B.; Atovmyan, L.O. J. Struc. Chem. 2000, 41(6), 1041.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Brian R. Landry
    • 1
  • Mark M. Turnbull
    • 1
  • Brendan Twamley
    • 2
  1. 1.Carlson School of Chemistry and BiochemistryClark UniversityWorcesterMAUSA
  2. 2.University Research OfficeUniversity of IdahoMoscowUSA

Personalised recommendations