Skip to main content
Log in

Naphthoflavone propargyl ether inhibitors of cytochrome P450

  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Cytochrome P450 enzymes protect the body from foreign substances through a mechanism that involves oxidation of those substances into more readily excretable polar compounds. It has been shown that some naphthoflavones function as substrates of certain P450 enzymes (CYP1A1 and CYP1B1) and with appropriate structural changes may become inhibitors. Moreover, propargyl ether derivatives of adamantane have been shown to function as selective inactivators of some P450 enzymes (CYP2B1 and CYP2B5). In an attempt to improve the potency and selectivity of inhibition, we have designed and synthesized a series of naphthoflavone propargyl ethers. We report here the synthesis, X-ray crystal structures, and inhibition data (IC50 of EROD inhibition in CYP1A1 and CYP1B1 enzymes) of α-naphthoflavone 2′-propargyl ether, β-naphthoflavone 2′-propargyl ether, α-naphthoflavone 4′-propargyl ether, and β-naphthoflavone 4′-propargyl ether. Crystallographic data: α-naphthoflavone 2′-propargyl ether, \(P\bar 1\), a=7.775(1) Å, b=8.062(1) Å, c=13.110(1) Å, α=84.32(1)°, β=75.42(1)°, γ=86.56(1)°, V=790.8(2) Å3; β-naphthoflavone 2′-propargyl ether, \(P\bar 1\), a=7.605(2) Å, b=7.793(1) Å, c=14.167(2) Å, α=77.06(1)°, β=75.41(1)°, γ=89.54(1)°, V=790.9(2) Å3; α-naphthoflavone 4′-propargyl ether, P21/n, a=14.595(2) Å, b=4.708(1) Å, c=24.745(6) Å, β=106.31(2)°, V=1631.8(7) Å3; β-naphthoflavone 4′-propargyl ether, P1, a=4.8871(5) Å, b= 7.9597(7) Å, c=21.788(3) Å, α=81.771(9)°, β=89.918(10)°, γ=72.223(8)°, V= 797.9(2) Å3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. de Montellano, O. (ed.); Cytochrome P450 Structure, Mechanism, and Biochemistry, 2nd Ed., Plenum Press: New York, 1995; pp. 1–652.

    Google Scholar 

  2. Estabrook, R.W. FASEB J. 1996, 10, 202–204.

    PubMed  CAS  Google Scholar 

  3. Masters, B.S.S. FASEB J. 1996, 10, 205.

    PubMed  CAS  Google Scholar 

  4. Foroozesh, M.; Primrose, V.L.; Guo, Z.; Bell, L.C.; Alworth, W.L.; Guengerich, F.P. Chem. Res. Toxicol. 1997, 10(1), 91–102.

    Article  PubMed  CAS  Google Scholar 

  5. Shimada, T.; Yamazaki, H.; Foroozesh, M.; Hopkins, N.E.; Alworth, W.L.; Guengerich, F.P. Chem. Res. Toxicol. 1998, 11(9), 1048–1056.

    Article  PubMed  CAS  Google Scholar 

  6. Cho, U.S.; Park, E.Y.; Dong, M.S.; Park, B.S.; Kim, K.; Kim, K.H. Biochim. Biophys. Acta 2003, 1648, 195–202.

    PubMed  CAS  Google Scholar 

  7. Tassaneeyakul, W.; Birkett, D.J.; Veronese, M.E.; McManus, M.E.; Turkey, R.H.; Quattrochi, L.C.; Gelboin, H.V.; Miners, J.O. J. Pharmacol. Exp. Ther. 1993, 265(1), 401– 407.

    PubMed  CAS  Google Scholar 

  8. Cho, U.S.; Park, E.Y.; Dong, M.S.; Park, B.S.; Kim, K.; Kim, K.H. Biochim. Biophys. Acta 2003, 1648(1–2), 195–202.

    PubMed  CAS  Google Scholar 

  9. Strobel, S.M.; Szklarz, G.D.; He, Y.Q.; Foroozesh, M.; Alworth, W.L.; Roberts, E.S.; Hollenberg, P.F.; Halpert, J.R. J. Pharmocol. Exp. Ther. 1999, 290, 445–451.

    CAS  Google Scholar 

  10. Mackay, S.; Gilmore, C.J.; Edwards, C.; Stewart, N.; Shankland, K. MaXus Computer Program for the Solution and Refinement of Crystal Structures; Bruker Nonius, The Netherlands, MacScience, Japan and The University of Glasgow, 1999.

  11. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp. 71–151.

  12. Conventional reliability indices: \(R = \sum {||F_{\rm o} | - |F_{\rm c} ||} /\sum {|F_{\rm o} |}\), and \(R_{\rm w} = ( {\sum {|F_{\rm o} | - |F_{\rm c} |^2 } /\sum {\hbox{\it w}|F_{\rm o} |^2 } })^{1/2}\), where F o and F c are observed and calculated structure factors, w=1/σ(F)2, and where σ(F) is the estimated standard deviation in F o.

Download references

Acknowledgments

We would like to acknowledge the National Institutes of Health MBRS SCORE Program (Grant No. GM08008) for support of this work and the MBRS RISE Program for support of the undergraduate research student, D. Lightsey (Grant No. GM060926).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl L. Klein Stevens.

Additional information

Supplementary material

The supplementary crystallographic data for (a) α-naphthoflavone 2′-propargyl ether (1) (CCDC 26896), (b) β-naphthoflavone 2′-propargyl ether (2) (CCDC 268697), (c) α-naphthoflavone 4′-propargyl ether (3) (CCDC 268698), and (d) β-naphthoflavone 4′-propargyl ether (4) (CCDC 268699) have been deposited. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, N., Lightsey, D., Foroozesh, M. et al. Naphthoflavone propargyl ether inhibitors of cytochrome P450. J Chem Crystallogr 36, 289–296 (2006). https://doi.org/10.1007/s10870-005-9061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-005-9061-5

KEY WORDS:

Navigation