Skip to main content

Advertisement

Log in

Modeling of a single nanoparticle interaction with the human blood plasma proteins

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

When nanoparticles are introduced into a physiological environment, proteins and lipids immediately cover their surface, forming a protein “corona”. It is well recognized that the corona structure influences the biological response of the body. Two deterministic models for corona formation of the human blood serum proteins around a single nanoparticle are presented and studied numerically in this paper. One of them is based on a coupled system of PDEs and involves diffusion of proteins toward the nanoparticle surface. The other one is described by ODEs and is a limit version of the first model as the protein diffusivity tends to infinity. The protein diffusivity influence on the temporal corona structure is studied in detail. Results are presented using figures and discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rahman, M., Laurent, S., Tawil, N., Mahmoudi, M.: Protein–Nanoparticle Interaction, vol. 15. Springer, Berlin (2013)

    Book  Google Scholar 

  2. Fleisher, C.C., Payne, C.K.: Nanoparticle–cell interactions: molecular structure of the protein corona and cellular outcomes. Acc. Hem. Res. 47, 2651–2659 (2014)

    Article  Google Scholar 

  3. Vroman, L., Adams, A.L., Fisher, G.C., Munoz, P.C.: Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 55, 156–159 (1980)

    Google Scholar 

  4. Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilson, H., Dawson, K.A., Linse, S.: Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 104, 2050–2055 (2007)

    Article  ADS  Google Scholar 

  5. Jung, S.Y., Lim, S.M., Albertorio, F., Kim, G., Gurau, M.C., Yang, R.D., Holden, M.A., Cremer, P.S.: The Vroman effect: a molecular level description of fibrinogen displacement. J. Am. Chem. Soc. 125, 12782–12786 (2003)

    Article  Google Scholar 

  6. Noh, H., Vogler, E.A.: Volumetric interpretation of protein adsorption: competition from mixtures and the Vroman effect. Biomaterials 28, 405–422 (2007)

    Article  Google Scholar 

  7. Oberle, M., Yigit, C., Angioletti-Uberti, S., Dzubiella, J., Ballauff, M.: Competitive protein adsorption to soft polymeric layers: binary mixtures and comparison to theory. J. Phys. Chem. B 119, 3250–3258 (2015)

    Article  Google Scholar 

  8. Yigit, C., Welsh, N., Ballauff, M., Dzubiella, J.: Protein sorption to charge microgels: characterizing binding isotherms and driving forces. Langmuir 28, 14373–14385 (2012)

    Article  Google Scholar 

  9. Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 105, 14265–14270 (2008)

    Article  ADS  Google Scholar 

  10. Lynch, I., Dawson, K.A.: Protein–nanoparticle interactions. Nano Today 3, 40–47 (2008)

    Article  Google Scholar 

  11. Lundqvict, M., Stigler, J., Cedervall, T., Berggard, T., Flanagan, M.B., Lynch, I., Elia, G., Dawson, K.: The evolution of the protein corona around nanoparticles: a test study. ACS Nano 5, 7503–7509 (2011)

    Article  Google Scholar 

  12. Mahmoudi, M., Lynch, I., Ejtehadi, M.R., Monopoli, M.P., Bombelli, F.B., Laurent, S.: Protein–nanoparticle interactions: opportunities and challenges. Chem. Rev. 111, 5610–5637 (2011)

    Article  Google Scholar 

  13. Aggarwal, P., Hall, J.B., McLeland, C.B., Dobrovolskaia, M.A., McNeil, S.E.: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug. Deliver. Rev. 61, 428–437 (2009)

    Article  Google Scholar 

  14. Welsch, N., Lu, Y., Dzubiella, J., Ballauff, M.: Adsorption of proteins to functional polymeric nanoparticles. Polymer 54, 2835–2849 (2013)

    Article  Google Scholar 

  15. Dell’Orco, D., Lundqvist, M., Oslakovic, C., Cedervall, T., Linse, S.: Modelling the time evolution of the nanoparticle–protein corona in a body fluid. PLoS ONE 5, 1–8 (2010)

    Google Scholar 

  16. Sahneh, F.D., Scoglio, C., Riviere, J.: Dynamics of nanoparticle–protein corona complex formation: analytical results from population balance equations. PLoS ONE 8, 1–10 (2013)

    Google Scholar 

  17. Welsch, N, Dzubiella, J., Graeber, A., Ballauff, M.: Protein binding to soft polymer layers: a quantitative study by fluorescence spectroscopy. Soft Matter 8, 12043–12052 (2012)

    Article  ADS  Google Scholar 

  18. LeDuck, C.A., Vroman, L., Leonard, E.F.: A mathematical model for the Vroman effect. Ind. Eng. Chem. Res. 34, 3488–3495 (1995)

    Article  Google Scholar 

  19. Aveyard, R., Haydon, R.: Introduction to the Principles of Surface Chemistry. Cambridge University Press, Cambridge (1973)

    Google Scholar 

  20. Seelig, J.: Thermodynamics of lipid–peptide interactions. Biochem. Biophys. Acta 1666, 40–50 (2004)

    Article  Google Scholar 

  21. McLaughlin, S.: The electrostatic properties of membranes. Annu. Rev. Biophys. Chem. 18, 113–136 (1989)

    Article  Google Scholar 

  22. Ygit, C., Heyda, J., Ballauff, M., Dzubiella, J.: Like-charged protein–polyelectrolyte complexation driven by charge patches. J. Chem. Phys. 143, 064905 (2015)

    Article  ADS  Google Scholar 

  23. Yu, S., Xu, X., Yigit, C., van der Giet, M., Zidek, W., Jankowski, J., Dzubiella, J., Ballauff, M.: Interaction of human serum albumin with short polyelectrolytes: a study by calorimetry and computer simulations. Soft Matter 11, 4630–4639 (2015)

    Article  ADS  Google Scholar 

  24. Vilaseca, P., Dawson, K.A., Franzese, G.: Understanding and modulating the competitive surface-adsorption of proteins through coarse-grained molecular dynamics simulations. Soft Matter 9, 6978–6985 (2013)

    Article  ADS  Google Scholar 

  25. Vilanova, O., Mittag, J.J., Kelly, P.M., Milani, S., Dawson, K.A., Radler, J.O., Franzese, G.: Understanding the kinetics of protein–nanoparticle corona formation. ACS Nano 10, 10842–10850 (2016)

    Article  Google Scholar 

  26. Samarskii, A.A.: The Theory of Difference Schemes. Marcel Dekker, New York (2001)

    Book  Google Scholar 

  27. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  28. Shampine, L.F., Gladwell, I., Thompson, S., Beardah, C.: Solving ODEs with MATLAB. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  29. Lassen, B., Malmsten, M.: Competitive protein adsorption at plasma polymer surfaces. J. Colloid Interface Sci. 186, 9–16 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs. M. Galagudza and A. Myasnikov who drew our attention to the nanoparticle–protein corona formation problem and anonymous reviewers whose valuable suggestions helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladas Skakauskas.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skakauskas, V., Katauskis, P. Modeling of a single nanoparticle interaction with the human blood plasma proteins. J Biol Phys 44, 605–617 (2018). https://doi.org/10.1007/s10867-018-9509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-018-9509-4

Keywords

Navigation