Journal of Biological Physics

, Volume 44, Issue 2, pp 211–224 | Cite as

Curating viscoelastic properties of icosahedral viruses, virus-based nanomaterials, and protein cages

  • Ravi Kant
  • Vamseedhar Rayaprolu
  • Kaitlyn McDonald
  • Brian Bothner
Original Paper


The beauty, symmetry, and functionality of icosahedral virus capsids has attracted the attention of biologists, physicists, and mathematicians ever since they were first observed. Viruses and protein cages assemble into functional architectures in a range of sizes, shapes, and symmetries. To fulfill their biological roles, these structures must self-assemble, resist stress, and are often dynamic. The increasing use of icosahedral capsids and cages in materials science has driven the need to quantify them in terms of structural properties such as rigidity, stiffness, and viscoelasticity. In this study, we employed Quartz Crystal Microbalance with Dissipation technology (QCM-D) to characterize and compare the mechanical rigidity of different protein cages and viruses. We attempted to unveil the relationships between rigidity, radius, shell thickness, and triangulation number. We show that the rigidity and triangulation numbers are inversely related to each other and the comparison of rigidity and radius also follows the same trend. Our results suggest that subunit orientation, protein–protein interactions, and protein–nucleic acid interactions are important for the resistance to deformation of these complexes, however, the relationships are complex and need to be explored further. The QCM-D based viscoelastic measurements presented here help us elucidate these relationships and show the future prospect of this technique in the field of physical virology and nano-biotechnology.


Virus Icosahedral QCMD Viscoelastic Protein cage 



We thank Dr. Matthew Dixon from Biolin Scientific for technical assistance. We also thank Ms. Neerja Zambare for insightful discussions. We thank Drs. David D Dunnigan, James L. Van Etten, Trevor Douglas, John E. Johnson, Adam Zlotnick, and Mavis McKenna for providing the samples for this analysis. This project was funded in part by NIH AAV grant R01 AI081961-01A1 to BB.


  1. 1.
    Caspar, D.L.D., Klug, A.: Physical principles in the construction of regular viruses. Basic Mech. Anim. Virus Biol. 27, 1–24 (1962)Google Scholar
  2. 2.
    Fricks, C.E., Hogle, J.M.: Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 64, 1934–1945 (1990)Google Scholar
  3. 3.
    Bothner, B., Schneemann, A., Marshall, D., Reddy, V., Johnson, J.E., Siuzdak, G.: Crystallographically identical virus capsids display different properties in solution. Nat. Struct. Mol. Biol. 6, 114–116 (1999). CrossRefGoogle Scholar
  4. 4.
    Johnson, J.E., Speir, J.: Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol. Biol. 269, 665–675 (1997). CrossRefGoogle Scholar
  5. 5.
    Gauss, G.H., Benas, P., Wiedenheft, B., Young, M., Douglas, T., Lawrence, C.M.: Structure of the DPS-like protein from Sulfolobus solfataricus reveals a bacterioferritin-like dimetal binding site within a DPS-like dodecameric assembly. Biochemistry 45, 10815–10827 (2006). CrossRefGoogle Scholar
  6. 6.
    Lawson, D.M., Artymiuk, P.J., Yewdall, S.J., Smith, J.M., Livingstone, J.C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G.: Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541–544 (1991). ADSCrossRefGoogle Scholar
  7. 7.
    Rayaprolu, V., Manning, B.M., Douglas, T., Bothner, B.: Virus particles as active nanomaterials that can rapidly change their viscoelastic properties in response to dilute solutions. Soft Matter 6, 5286 (2010). ADSCrossRefGoogle Scholar
  8. 8.
    Dutta, A.K., Belfort, G., Dutta, A.K., Belfort, G.: Adsorbed gels versus brushes: viscoelastic differences. Langmuir 23, 3088–3094 (2007). CrossRefGoogle Scholar
  9. 9.
    Dixon, M.C.: Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 19, 151–158 (2008)Google Scholar
  10. 10.
    Rydell, G.E., Dahlin, A.B., Höök, F., Larson, G.: QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. Glycobiology 19(11), 1176–1184 (2009)Google Scholar
  11. 11.
    da Silva, A.K., Kavanagh, O.V., Estes, M.K., Elimelech, M.: Adsorption and aggregation properties of norovirus GI and GII virus-like particles demonstrate differing responses to solution chemistry. Environ. Sci. Technol. 45, 520–526 (2011). ADSCrossRefGoogle Scholar
  12. 12.
    Ivanovska, I.L., de Pablo, P.J., Ibarra, B., Sgalari, G., MacKintosh, F.C., Carrascosa, J.L., Schmidt, C.F., Wuite, G.J.L.: Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl. Acad. Sci. U. S. A. 101, 7600–7605 (2004). ADSCrossRefGoogle Scholar
  13. 13.
    Gibbons, M., Klug, W.: Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75, 031901 (2007).
  14. 14.
    Roos, W.H., Wuite, G.J.L.: Nanoindentation studies reveal material properties of viruses. Adv. Mater. 21, 1187–1192 (2009). CrossRefGoogle Scholar
  15. 15.
    Nguyen, T.H., Elimelech, M.: Adsorption of plasmid DNA to a natural organic matter-coated silica surface: kinetics, conformation, and reversibility. Langmuir 23, 3273–3279 (2007). CrossRefGoogle Scholar
  16. 16.
    Nguyen, T.H., Chen, K.L.: Role of divalent cations in plasmid DNA adsorption to natural organic matter-coated silica surface. Environ. Sci. Technol. 41, 5370–5375 (2007). ADSCrossRefGoogle Scholar
  17. 17.
    Nguyen, T.H., Elimelech, M.: Plasmid DNA adsorption on silica: kinetics and conformational changes in monovalent and divalent salts. Biomacromolecules 8, 24–32 (2007). CrossRefGoogle Scholar
  18. 18.
    Keller, C., Kasemo, B.: Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75, 1397–1402 (1998). ADSCrossRefGoogle Scholar
  19. 19.
    Cho, N.J., Cho, S.J., Kwang, H.C., Glenn, J.S., Frank, C.W.: Employing an amphipathic viral peptide to create a lipid bilayer on au and TiO2. J. Am. Chem. Soc. 129, 10050–10051 (2007). CrossRefGoogle Scholar
  20. 20.
    Schofield, A.L., Rudd, T.R., Martin, D.S., Fernig, D.G., Edwards, C.: Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring. Biosens. Bioelectron. 23, 407–413 (2007). CrossRefGoogle Scholar
  21. 21.
    Wittmer, C.R., Phelps, J.A., Saltzman, W.M., Van Tassel, P.R.: Fibronectin terminated multilayer films: protein adsorption and cell attachment studies. Biomaterials 28, 851–860 (2007). CrossRefGoogle Scholar
  22. 22.
    Moreno-Madrid, F., Martín-González, N., Llauró, A., Ortega-Esteban, A., Hernando-Pérez, M., Douglas, T., Schaap, I.A.T., de Pablo, P.J.: Atomic force microscopy of virus shells. Biochem. Soc. Trans. 45, 499–511 (2017). CrossRefGoogle Scholar
  23. 23.
    Llauro, A., Schwarz, B., Koliyatt, R., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. (2016).
  24. 24.
    Llauró, A., Guerra, P., Irigoyen, N., Rodríguez, J.F., Verdaguer, N., De Pablo, P.J.: Mechanical stability and reversible fracture of vault particles. Biophys. J. 106, 687–695 (2014). ADSCrossRefGoogle Scholar
  25. 25.
    Llauro, A., Schwarz, B., Koliyatt, R., de Pablo, P.J., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10(9), 8465–8473 (2016).
  26. 26.
    Zeng, C., Hernando-Pérez, M., Dragnea, B., Ma, X., van der Schoot, P., Zandi, R.: Contact mechanics of a small icosahedral virus. Phys. Rev. Lett. 119, 38102 (2017). ADSCrossRefGoogle Scholar
  27. 27.
    Llauró, A., Schwarz, B., Koliyatt, R., de Pablo, P.J., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10, 8465–8473 (2016). CrossRefGoogle Scholar
  28. 28.
    Kang, S., Suci, P., Broomell, C.C., Iwahori, K., Kobayashi, M., Yamashita, I., Young, M., Douglas, T.: Janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages. Nano Lett. 9, 2360–2366 (2009). ADSCrossRefGoogle Scholar
  29. 29.
    Steinmetz, N.F., Findlay, K.C., Noel, T.R., Parker, R., Lomonossoff, G.P., Evans, D.J.: Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: the film architecture is different for spheres versus rods. Chembiochem 9, 1662–1670 (2008). CrossRefGoogle Scholar
  30. 30.
    Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks, C.L., Reddy, V.S.: VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res. 37, D436–D442 (2009). CrossRefGoogle Scholar
  31. 31.
    Grimm, D., Kay, M.: From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr. Gene Ther. 3, 281–304 (2003)CrossRefGoogle Scholar
  32. 32.
    Van Vliet, K.M., Blouin, V., Brument, N., Agbandje-McKenna, M., Snyder, R.O., Van Vliet, K.M., Blouin, V., Brument, N., Agbandje-McKenna, M., Snyder, R.O., Van Vliet, K.M., Blouin, V., Brument, N., Agbandje-McKenna, M., Snyder, R.O.: The role of the adeno-associated virus capsid in gene transfer. Methods Mol. Biol. 437, 51–91 (2008). CrossRefGoogle Scholar
  33. 33.
    Rayaprolu, V., Kruse, S., Kant, R., Venkatakrishnan, B., Movahed, N., Brooke, D., Lins, B., Bennett, A., Potter, T., McKenna, R., Agbandje-McKenna, M., Bothner, B.: Comparative analysis of adeno-associated virus capsid stability and dynamics. J. Virol. 87, 13150–13160 (2013). CrossRefGoogle Scholar
  34. 34.
    Bennett, A., Patel, S., Mietzsch, M., Jose, A., Lins-Austin, B., Yu, J.C., Bothner, B., McKenna, R., Agbandje-McKenna, M.: Thermal stability as a determinant of AAV serotype identity. Mol. Ther. Methods Clin. Dev. 6, 171–182 (2017). CrossRefGoogle Scholar
  35. 35.
    Zeng, C., Moller-Tank, S., Asokan, A., Dragnea, B.: Probing the link among genomic cargo, contact mechanics, and nanoindentation in recombinant adeno-associated virus 2. J. Phys. Chem. B 121, 1843–1853 (2017). CrossRefGoogle Scholar
  36. 36.
    Willits, D., Zhao, X., Olson, N., Baker, T.S., Zlotnick, A., Johnson, J.E., Douglas, T., Young, M.J.: Effects of the cowpea chlorotic mottle bromovirus Î2-hexamer structure on virion assembly. Virology 306, 280 (2003)CrossRefGoogle Scholar
  37. 37.
    Roos, W.H., Bruinsma, R., Wuite, G.J.L.: Physical virology. Nat. Phys. 6, 733–743 (2010). CrossRefGoogle Scholar
  38. 38.
    Wang, J.C.-Y., Dhason, M.S., Zlotnick, A.: Structural organization of pregenomic RNA and the carboxy-terminal domain of the capsid protein of hepatitis B virus. PLoS Pathog. 8, e1002919 (2012). CrossRefGoogle Scholar
  39. 39.
    Selzer, L., Kant, R., Wang, J.C.-Y.Y., Bothner, B., Zlotnick, A.: Hepatitis B virus core protein phosphorylation sites affect capsid stability and transient exposure of the C-terminal domain. J. Biol. Chem. 290, 28584–28593 (2015).
  40. 40.
    Matsui, T., Lander, G., Johnson, J.E.: Characterization of large conformational changes and autoproteolysis in the maturation of a T=4 virus capsid. J. Virol. 83, 1126–1134 (2009). CrossRefGoogle Scholar
  41. 41.
    Banerjee, M., Khayat, R., Walukiewicz, H.E., Odegard, A.L., Schneemann, A., Johnson, J.E.: Dissecting the functional domains of a nonenveloped virus membrane penetration peptide. J. Virol. 83, 6929–6933 (2009). CrossRefGoogle Scholar
  42. 42.
    Jordan, P.C., Patterson, D.P., Saboda, K.N., Edwards, E.J., Miettinen, H.M., Basu, G., Thielges, M.C., Douglas, T.: Self-assembling biomolecular catalysts for hydrogen production. Nat. Chem. 8, 179–185 (2016). CrossRefGoogle Scholar
  43. 43.
    Zhou, Z., Bedwell, G.J., Li, R., Bao, N., Prevelige, P.E., Gupta, A.: P22 virus-like particles constructed Au/CdS plasmonic photocatalytic nanostructures for enhanced photoactivity. Chem. Commun. 51, 1062–1065 (2015). CrossRefGoogle Scholar
  44. 44.
    Qazi, S., Miettinen, H.M., Wilkinson, R.A., McCoy, K., Douglas, T., Wiedenheft, B.: Programmed self-assembly of an active P22-Cas9 nanocarrier system. Mol. Pharm. 13, 1191–1196 (2016). CrossRefGoogle Scholar
  45. 45.
    Douglas, T., Young, M.: Host–guest encapsulation of materials by assembled virus protein cages. Int. J. Sci. 393, 1996–1999 (1998)Google Scholar
  46. 46.
    Nassal, M., Schaller, H.: Hepatitis B virus replication. Trends Microbiol. 1, 221–228 (1993). CrossRefGoogle Scholar
  47. 47.
    Purohit, P.K., Inamdar, M.M., Grayson, P.D., Squires, T.M., Kondev, J., Phillips, R.: Forces during bacteriophage DNA packaging and ejection. Biophys. J. 88, 851–866 (2005). CrossRefGoogle Scholar
  48. 48.
    Llauró, A., Luque, D., Edwards, E., Trus, B.L., Avera, J., Reguera, D., Douglas, T., de Pablo, P.J., Castón, J.R.: Cargo–shell and cargo–cargo couplings govern the mechanics of artificially loaded virus-derived cages. Nano 8, 9328–9336 (2016). ADSGoogle Scholar
  49. 49.
    Klug, W., Bruinsma, R., Michel, J.-P., Knobler, C., Ivanovska, I., Schmidt, C., Wuite, G.: Failure of viral shells. Phys. Rev. Lett. 97, 228101 (2006).
  50. 50.
    Cieplak, M., Robbins, M.O.: Nanoindentation of 35 virus capsids in a molecular model: relating mechanical properties to structure. PLoS ONE 8, e63640 (2013).
  51. 51.
    Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations. Proc. Natl. Acad. Sci. USA 103(16), 6184–6189 (2006)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryMontana State UniversityBozemanUSA
  2. 2.Department of Cell Biology and NeuroscienceMontana State UniversityBozemanUSA

Personalised recommendations