Skip to main content
Log in

Curating viscoelastic properties of icosahedral viruses, virus-based nanomaterials, and protein cages

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The beauty, symmetry, and functionality of icosahedral virus capsids has attracted the attention of biologists, physicists, and mathematicians ever since they were first observed. Viruses and protein cages assemble into functional architectures in a range of sizes, shapes, and symmetries. To fulfill their biological roles, these structures must self-assemble, resist stress, and are often dynamic. The increasing use of icosahedral capsids and cages in materials science has driven the need to quantify them in terms of structural properties such as rigidity, stiffness, and viscoelasticity. In this study, we employed Quartz Crystal Microbalance with Dissipation technology (QCM-D) to characterize and compare the mechanical rigidity of different protein cages and viruses. We attempted to unveil the relationships between rigidity, radius, shell thickness, and triangulation number. We show that the rigidity and triangulation numbers are inversely related to each other and the comparison of rigidity and radius also follows the same trend. Our results suggest that subunit orientation, protein–protein interactions, and protein–nucleic acid interactions are important for the resistance to deformation of these complexes, however, the relationships are complex and need to be explored further. The QCM-D based viscoelastic measurements presented here help us elucidate these relationships and show the future prospect of this technique in the field of physical virology and nano-biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Caspar, D.L.D., Klug, A.: Physical principles in the construction of regular viruses. Basic Mech. Anim. Virus Biol. 27, 1–24 (1962)

    Google Scholar 

  2. Fricks, C.E., Hogle, J.M.: Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 64, 1934–1945 (1990)

    Google Scholar 

  3. Bothner, B., Schneemann, A., Marshall, D., Reddy, V., Johnson, J.E., Siuzdak, G.: Crystallographically identical virus capsids display different properties in solution. Nat. Struct. Mol. Biol. 6, 114–116 (1999). https://doi.org/10.1038/5799

    Article  Google Scholar 

  4. Johnson, J.E., Speir, J.: Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol. Biol. 269, 665–675 (1997). https://doi.org/10.1006/jmbi.1997.1068

    Article  Google Scholar 

  5. Gauss, G.H., Benas, P., Wiedenheft, B., Young, M., Douglas, T., Lawrence, C.M.: Structure of the DPS-like protein from Sulfolobus solfataricus reveals a bacterioferritin-like dimetal binding site within a DPS-like dodecameric assembly. Biochemistry 45, 10815–10827 (2006). https://doi.org/10.1021/bi060782u

    Article  Google Scholar 

  6. Lawson, D.M., Artymiuk, P.J., Yewdall, S.J., Smith, J.M., Livingstone, J.C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G.: Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541–544 (1991). https://doi.org/10.1038/349541a0

    Article  ADS  Google Scholar 

  7. Rayaprolu, V., Manning, B.M., Douglas, T., Bothner, B.: Virus particles as active nanomaterials that can rapidly change their viscoelastic properties in response to dilute solutions. Soft Matter 6, 5286 (2010). https://doi.org/10.1039/c0sm00459f

    Article  ADS  Google Scholar 

  8. Dutta, A.K., Belfort, G., Dutta, A.K., Belfort, G.: Adsorbed gels versus brushes: viscoelastic differences. Langmuir 23, 3088–3094 (2007). https://doi.org/10.1021/la0624743

    Article  Google Scholar 

  9. Dixon, M.C.: Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 19, 151–158 (2008)

    Google Scholar 

  10. Rydell, G.E., Dahlin, A.B., Höök, F., Larson, G.: QCM-D studies of human norovirus VLPs binding to glycosphingolipids in supported lipid bilayers reveal strain-specific characteristics. Glycobiology 19(11), 1176–1184 (2009)

  11. da Silva, A.K., Kavanagh, O.V., Estes, M.K., Elimelech, M.: Adsorption and aggregation properties of norovirus GI and GII virus-like particles demonstrate differing responses to solution chemistry. Environ. Sci. Technol. 45, 520–526 (2011). https://doi.org/10.1021/es102368d

    Article  ADS  Google Scholar 

  12. Ivanovska, I.L., de Pablo, P.J., Ibarra, B., Sgalari, G., MacKintosh, F.C., Carrascosa, J.L., Schmidt, C.F., Wuite, G.J.L.: Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl. Acad. Sci. U. S. A. 101, 7600–7605 (2004). https://doi.org/10.1073/pnas.0308198101

    Article  ADS  Google Scholar 

  13. Gibbons, M., Klug, W.: Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75, 031901 (2007). https://doi.org/10.1103/PhysRevE.75.031901

  14. Roos, W.H., Wuite, G.J.L.: Nanoindentation studies reveal material properties of viruses. Adv. Mater. 21, 1187–1192 (2009). https://doi.org/10.1002/adma.200801709

    Article  Google Scholar 

  15. Nguyen, T.H., Elimelech, M.: Adsorption of plasmid DNA to a natural organic matter-coated silica surface: kinetics, conformation, and reversibility. Langmuir 23, 3273–3279 (2007). https://doi.org/10.1021/la0622525

    Article  Google Scholar 

  16. Nguyen, T.H., Chen, K.L.: Role of divalent cations in plasmid DNA adsorption to natural organic matter-coated silica surface. Environ. Sci. Technol. 41, 5370–5375 (2007). https://doi.org/10.1021/es070425m

    Article  ADS  Google Scholar 

  17. Nguyen, T.H., Elimelech, M.: Plasmid DNA adsorption on silica: kinetics and conformational changes in monovalent and divalent salts. Biomacromolecules 8, 24–32 (2007). https://doi.org/10.1021/bm0603948

    Article  Google Scholar 

  18. Keller, C., Kasemo, B.: Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75, 1397–1402 (1998). https://doi.org/10.1016/S0006-3495(98)74057-3

    Article  ADS  Google Scholar 

  19. Cho, N.J., Cho, S.J., Kwang, H.C., Glenn, J.S., Frank, C.W.: Employing an amphipathic viral peptide to create a lipid bilayer on au and TiO2. J. Am. Chem. Soc. 129, 10050–10051 (2007). https://doi.org/10.1021/ja0701412

    Article  Google Scholar 

  20. Schofield, A.L., Rudd, T.R., Martin, D.S., Fernig, D.G., Edwards, C.: Real-time monitoring of the development and stability of biofilms of Streptococcus mutans using the quartz crystal microbalance with dissipation monitoring. Biosens. Bioelectron. 23, 407–413 (2007). https://doi.org/10.1016/j.bios.2007.05.001

    Article  Google Scholar 

  21. Wittmer, C.R., Phelps, J.A., Saltzman, W.M., Van Tassel, P.R.: Fibronectin terminated multilayer films: protein adsorption and cell attachment studies. Biomaterials 28, 851–860 (2007). https://doi.org/10.1016/j.biomaterials.2006.09.037

    Article  Google Scholar 

  22. Moreno-Madrid, F., Martín-González, N., Llauró, A., Ortega-Esteban, A., Hernando-Pérez, M., Douglas, T., Schaap, I.A.T., de Pablo, P.J.: Atomic force microscopy of virus shells. Biochem. Soc. Trans. 45, 499–511 (2017). https://doi.org/10.1042/BST20160316

    Article  Google Scholar 

  23. Llauro, A., Schwarz, B., Koliyatt, R., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. (2016). https://doi.org/10.1021/acsnano.6b03441

  24. Llauró, A., Guerra, P., Irigoyen, N., Rodríguez, J.F., Verdaguer, N., De Pablo, P.J.: Mechanical stability and reversible fracture of vault particles. Biophys. J. 106, 687–695 (2014). https://doi.org/10.1016/j.bpj.2013.12.035

    Article  ADS  Google Scholar 

  25. Llauro, A., Schwarz, B., Koliyatt, R., de Pablo, P.J., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10(9), 8465–8473 (2016). https://doi.org/10.1021/acsnano.6b03441

  26. Zeng, C., Hernando-Pérez, M., Dragnea, B., Ma, X., van der Schoot, P., Zandi, R.: Contact mechanics of a small icosahedral virus. Phys. Rev. Lett. 119, 38102 (2017). https://doi.org/10.1103/PhysRevLett.119.038102

    Article  ADS  Google Scholar 

  27. Llauró, A., Schwarz, B., Koliyatt, R., de Pablo, P.J., Douglas, T.: Tuning viral capsid nanoparticle stability with symmetrical morphogenesis. ACS Nano 10, 8465–8473 (2016). https://doi.org/10.1021/acsnano.6b03441

    Article  Google Scholar 

  28. Kang, S., Suci, P., Broomell, C.C., Iwahori, K., Kobayashi, M., Yamashita, I., Young, M., Douglas, T.: Janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages. Nano Lett. 9, 2360–2366 (2009). https://doi.org/10.1021/nl9009028

    Article  ADS  Google Scholar 

  29. Steinmetz, N.F., Findlay, K.C., Noel, T.R., Parker, R., Lomonossoff, G.P., Evans, D.J.: Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: the film architecture is different for spheres versus rods. Chembiochem 9, 1662–1670 (2008). https://doi.org/10.1002/cbic.200800070

    Article  Google Scholar 

  30. Carrillo-Tripp, M., Shepherd, C.M., Borelli, I.A., Venkataraman, S., Lander, G., Natarajan, P., Johnson, J.E., Brooks, C.L., Reddy, V.S.: VIPERdb2: an enhanced and web API enabled relational database for structural virology. Nucleic Acids Res. 37, D436–D442 (2009). https://doi.org/10.1093/nar/gkn840

    Article  Google Scholar 

  31. Grimm, D., Kay, M.: From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr. Gene Ther. 3, 281–304 (2003)

    Article  Google Scholar 

  32. Van Vliet, K.M., Blouin, V., Brument, N., Agbandje-McKenna, M., Snyder, R.O., Van Vliet, K.M., Blouin, V., Brument, N., Agbandje-McKenna, M., Snyder, R.O., Van Vliet, K.M., Blouin, V., Brument, N., Agbandje-McKenna, M., Snyder, R.O.: The role of the adeno-associated virus capsid in gene transfer. Methods Mol. Biol. 437, 51–91 (2008). https://doi.org/10.1007/978-1-59745-210-6_2

    Article  Google Scholar 

  33. Rayaprolu, V., Kruse, S., Kant, R., Venkatakrishnan, B., Movahed, N., Brooke, D., Lins, B., Bennett, A., Potter, T., McKenna, R., Agbandje-McKenna, M., Bothner, B.: Comparative analysis of adeno-associated virus capsid stability and dynamics. J. Virol. 87, 13150–13160 (2013). https://doi.org/10.1128/JVI.01415-13

    Article  Google Scholar 

  34. Bennett, A., Patel, S., Mietzsch, M., Jose, A., Lins-Austin, B., Yu, J.C., Bothner, B., McKenna, R., Agbandje-McKenna, M.: Thermal stability as a determinant of AAV serotype identity. Mol. Ther. Methods Clin. Dev. 6, 171–182 (2017). https://doi.org/10.1016/j.omtm.2017.07.003

    Article  Google Scholar 

  35. Zeng, C., Moller-Tank, S., Asokan, A., Dragnea, B.: Probing the link among genomic cargo, contact mechanics, and nanoindentation in recombinant adeno-associated virus 2. J. Phys. Chem. B 121, 1843–1853 (2017). https://doi.org/10.1021/acs.jpcb.6b10131

    Article  Google Scholar 

  36. Willits, D., Zhao, X., Olson, N., Baker, T.S., Zlotnick, A., Johnson, J.E., Douglas, T., Young, M.J.: Effects of the cowpea chlorotic mottle bromovirus Î2-hexamer structure on virion assembly. Virology 306, 280 (2003)

    Article  Google Scholar 

  37. Roos, W.H., Bruinsma, R., Wuite, G.J.L.: Physical virology. Nat. Phys. 6, 733–743 (2010). https://doi.org/10.1038/nphys1797

    Article  Google Scholar 

  38. Wang, J.C.-Y., Dhason, M.S., Zlotnick, A.: Structural organization of pregenomic RNA and the carboxy-terminal domain of the capsid protein of hepatitis B virus. PLoS Pathog. 8, e1002919 (2012). https://doi.org/10.1371/journal.ppat.1002919

    Article  Google Scholar 

  39. Selzer, L., Kant, R., Wang, J.C.-Y.Y., Bothner, B., Zlotnick, A.: Hepatitis B virus core protein phosphorylation sites affect capsid stability and transient exposure of the C-terminal domain. J. Biol. Chem. 290, 28584–28593 (2015). https://doi.org/10.1074/jbc.M115.678441

  40. Matsui, T., Lander, G., Johnson, J.E.: Characterization of large conformational changes and autoproteolysis in the maturation of a T=4 virus capsid. J. Virol. 83, 1126–1134 (2009). https://doi.org/10.1128/JVI.01859-08

    Article  Google Scholar 

  41. Banerjee, M., Khayat, R., Walukiewicz, H.E., Odegard, A.L., Schneemann, A., Johnson, J.E.: Dissecting the functional domains of a nonenveloped virus membrane penetration peptide. J. Virol. 83, 6929–6933 (2009). https://doi.org/10.1128/JVI.02299-08

    Article  Google Scholar 

  42. Jordan, P.C., Patterson, D.P., Saboda, K.N., Edwards, E.J., Miettinen, H.M., Basu, G., Thielges, M.C., Douglas, T.: Self-assembling biomolecular catalysts for hydrogen production. Nat. Chem. 8, 179–185 (2016). https://doi.org/10.1038/nchem.2416

    Article  Google Scholar 

  43. Zhou, Z., Bedwell, G.J., Li, R., Bao, N., Prevelige, P.E., Gupta, A.: P22 virus-like particles constructed Au/CdS plasmonic photocatalytic nanostructures for enhanced photoactivity. Chem. Commun. 51, 1062–1065 (2015). https://doi.org/10.1039/C4CC08057B

    Article  Google Scholar 

  44. Qazi, S., Miettinen, H.M., Wilkinson, R.A., McCoy, K., Douglas, T., Wiedenheft, B.: Programmed self-assembly of an active P22-Cas9 nanocarrier system. Mol. Pharm. 13, 1191–1196 (2016). https://doi.org/10.1021/acs.molpharmaceut.5b00822

    Article  Google Scholar 

  45. Douglas, T., Young, M.: Host–guest encapsulation of materials by assembled virus protein cages. Int. J. Sci. 393, 1996–1999 (1998)

    Google Scholar 

  46. Nassal, M., Schaller, H.: Hepatitis B virus replication. Trends Microbiol. 1, 221–228 (1993). https://doi.org/10.1016/0966-842X(93)90136-F

    Article  Google Scholar 

  47. Purohit, P.K., Inamdar, M.M., Grayson, P.D., Squires, T.M., Kondev, J., Phillips, R.: Forces during bacteriophage DNA packaging and ejection. Biophys. J. 88, 851–866 (2005). https://doi.org/10.1529/BIOPHYSJ.104.047134

    Article  Google Scholar 

  48. Llauró, A., Luque, D., Edwards, E., Trus, B.L., Avera, J., Reguera, D., Douglas, T., de Pablo, P.J., Castón, J.R.: Cargo–shell and cargo–cargo couplings govern the mechanics of artificially loaded virus-derived cages. Nano 8, 9328–9336 (2016). https://doi.org/10.1039/c6nr01007e

    ADS  Google Scholar 

  49. Klug, W., Bruinsma, R., Michel, J.-P., Knobler, C., Ivanovska, I., Schmidt, C., Wuite, G.: Failure of viral shells. Phys. Rev. Lett. 97, 228101 (2006). https://doi.org/10.1103/PhysRevLett.97.228101

  50. Cieplak, M., Robbins, M.O.: Nanoindentation of 35 virus capsids in a molecular model: relating mechanical properties to structure. PLoS ONE 8, e63640 (2013). https://doi.org/10.1371/journal.pone.0063640

  51. Michel, J.P., Ivanovska, I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J.L., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations. Proc. Natl. Acad. Sci. USA 103(16), 6184–6189 (2006)

Download references

Acknowledgements

We thank Dr. Matthew Dixon from Biolin Scientific for technical assistance. We also thank Ms. Neerja Zambare for insightful discussions. We thank Drs. David D Dunnigan, James L. Van Etten, Trevor Douglas, John E. Johnson, Adam Zlotnick, and Mavis McKenna for providing the samples for this analysis. This project was funded in part by NIH AAV grant R01 AI081961-01A1 to BB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Bothner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kant, R., Rayaprolu, V., McDonald, K. et al. Curating viscoelastic properties of icosahedral viruses, virus-based nanomaterials, and protein cages. J Biol Phys 44, 211–224 (2018). https://doi.org/10.1007/s10867-018-9491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-018-9491-x

Keywords

Navigation