Confining annealed branched polymers inside spherical capsids

  • Alexander Y. Grosberg
  • Robijn Bruinsma
ORIGINAL PAPER

Abstract

The Lifshitz equation for the confinement of a linear polymer in a spherical cavity of radius R has the form of the Schrödinger equation for a quantum particle trapped in a potential well with flat bottom and infinite walls at radius R. We show that the Lifshitz equation of a confined annealed branched polymer has the form of the Schrödinger equation for a quantum harmonic oscillator. The resulting confinement energy has a 1/R4 dependence on the confinement radius R, in contrast to the case of confined linear polymers, which have a 1/R2 dependence. We discuss the application of this result to the problem of the confinement of single-stranded RNA molecules inside spherical capsids.

Keywords

Branched polymers Confinement Viral RNA 

Notes

Acknowledgments

RB would like to acknowledge support from the National Science Foundation under DMR Grant 1309423. The work of AYG was supported partially by the MRSEC Program of the National Science Foundation under Award Number DMR-1420073. RB and AYG thank the Aspen Center for Physics where part of this work was done with the support of the National Science Foundation under Grant No. PHY-1066293.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yoffe, A.M., Prinsen, P., Gopal, A., Knobler, C.M., Gelbart, W.M., Ben-Shaul, A.: Predicting the sizes of large RNA molecules. Proc. Natl. Acad. Sci. 105, 16153 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Fang, L., Gelbart, W., Ben-Shaul, A.: The size of RNA as an ideal branched polymer. J. Chem. Phys. 135, 155105 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    de Gennes, P.-G.: Statistics of branching and hairpin helices for the dat copolymer. Biopolymers 6, 715–729 (1968)CrossRefGoogle Scholar
  4. 4.
    Perlmutter, J.D., Qiao, C., Hagan, M.F.: Viral genome structures are optimal for capsid assembly. eLife 2, e00632 (2013)CrossRefGoogle Scholar
  5. 5.
    Singaram, S.W., Garmann, R.F., Knobler, C.M., Gelbart, W.M., Ben-Shaul, A.: Role of RNA branchedness in the competition for viral capsid proteins. J. Phys. Chem. B 119, 13991–14002 (2015)CrossRefGoogle Scholar
  6. 6.
    Erdemci-Tandogan, G., Wagner, J., van der Schoot, P., Podgornik, R., Zandi, R.: RNA topology remolds electrostatic stabilization of viruses. Phys. Rev. E 89, 032707 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Erdemci-Tandogan, G., Wagner, J., van der Schoot, P., Podgornik, R., Zandi, R.: Effects of RNA branching on the electrostatic stabilization of viruses. Phys. Rev. E 94, 022408 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Li, S., Erdemci-Tandogan, G., Wagner, J., van der Schoot, P., Zandi, R.: Impact of a nonuniform charge distribution on virus assembly. Phys. Rev. E 96, 022401 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Li, S., Orland, H., Zandi, R.: Self consistent field theory of virus assembly. ArXiv e-prints (2017)Google Scholar
  10. 10.
    Bruinsma, R.F., Comas-Garcia, M., Garmann, R.F., Grosberg, A.Y.: Equilibrium selfassembly of small RNA viruses. Phys. Rev. E 93, 032405 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Hofacker, I., Fontana, W., Stadler, P., Bonhoeffer, L., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatsh. Chem. (Chemical Monthly) 125, 167–188 (1994)CrossRefGoogle Scholar
  12. 12.
    Kelly, J., Grosberg, A.Y., Bruinsma, R.: Sequence dependence of viral RNA encapsidation. J. Phys. Chem. B 120, 6038–6050, (2016)CrossRefGoogle Scholar
  13. 13.
    Gopal, A., Zhou, Z., Knobler, C.M., Gelbart, W.M.: Visualizing large RNA molecules in solution. RNA 18, 284–299 (2012)CrossRefGoogle Scholar
  14. 14.
    Garmann, R., Comas-Garcia, M., Gopal, A., Knobler, C.M., Gelbart, W.M.: The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions. J. Mol. Biol. 426, 1050–1060 (2013)CrossRefGoogle Scholar
  15. 15.
    Grosberg, A.Y., Kelly, J., Bruinsma, R.: The confinement of an annealed branched polymer by a potential well. Low Temp. Phys. 43, 101–109 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Grosberg, A.Y., Gutin, A., Shakhnovich, E.: Conformational entropy of a branched polymer. Macromolecules 28, 3718–3727 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Grosberg, A.Y., Khokhlov, A.R.: Statistical Physics of Macromolecules. American Institute of Physics Press, New York (1994)Google Scholar
  18. 18.
    Lifshitz, I.M.: Some problems of the statistical theory of biopolymers. Zh. Eksp. Teor. Fiz. 55, 2408–2422 (1968)Google Scholar
  19. 19.
    Parisi, G., Sourlas, N.: Critical behavior of branched polymers and the lee-yang edge singularity. Phys. Rev. Lett. 46, 871–874 (1981)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gutin, A.M., Grosberg, A.Y., Shakhnovich, E.I.: Polymers with annealed and quenched branchings belong to different universality classes. Macromolecules 26, 1293–1295 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    Grosberg, A., Nechaev, S.: From statistics of regular tree-like graphs to distribution function and gyration radius of branched polymers. J. Phys. A: Math. Theor. 48, 345003 (2015)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Rosa, A., Everaers, R.: Computer simulations of randomly branching polymers: annealed versus quenched branching structures. J. Phys. A Math. Theor. 49, 345001 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Everaers, R., Grosberg, A.Y., Rubinstein, M., Rosa, A.: Flory theory of randomly branched polymers. Soft Matter 13, 1223–1234 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Kelly, J.: Physics of Complex Polymeric Molecules, Ph.D. thesis, UCLA. https://escholarship.org/uc/item/9hk3m75p (2017)

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Center for Soft Matter ResearchNew York UniversityNew YorkUSA
  2. 2.Department of Physics and AstronomyUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations