Skip to main content
Log in

Vibrational spectra of DNA in the confined interglobular volume of photonic crystal

  • ORIGINAL PAPER
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The impact of confinement of DNA molecules in a limited volume of the cavity of photonic crystals (PC) on the vibrational properties of the DNA molecule and its conformation is studied. According to our preliminary study, the aqueous shell is removed when the DNA molecules are infiltrated into the PC cavities. Raman scattering (RS) DNA marker lines showed a dramatic conformational change of DNA in the PC cavities and the appearance of new unknown conformational states. We observed the enhancement of vibrational modes of DNA in the PC in comparison with free DNA of about tenfold and the absence of vibrational modes in DNA bases in a region of 1450–1700 cm−1. The observed features in the RS spectra of DNA are explained by the impact of confined interglobular volume and strong localization of the electromagnetic field. Namely, FDTD simulations in linear regime demonstrate the localization of light in cavities of PC with an approximately ninefold enhancement of the electric field within the photonic stop-band, which is the main reason for RS amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barhoumi, A., Zhang, D., Tam, F., Halas, N.J.: Surface-enhanced Raman spectroscopy of DNA. J. Am. Chem. Soc. 130, 5523–5529 (2008). https://doi.org/10.1021/ja800023j

    Article  Google Scholar 

  2. Metzker, M.L.: Emerging technologies in DNA sequencing. Genome Res. 15, 1767–1776 (2005). https://doi.org/10.1101/gr.3770505

    Article  Google Scholar 

  3. Prescott, B., Steinmetz, W., Thomas, G.J.: Characterization of DNA structures by laser Raman spectroscopy. Biopolymers 23, 235–256 (1984). https://doi.org/10.1002/bip.360230206

    Article  Google Scholar 

  4. Dovbeshko, G.I., Chegel, V.I., Gridina, N.Y., Repnytska, O.P., Shirshov, Y.M., Tryndiak, V.P., Todor, I.M., Solyanik, G.I.: Surface enhanced IR absorption of nucleic acids from tumor cells: FTIR reflectance study. Biopolymers 67, 470–486 (2002). https://doi.org/10.1002/bip.10165

    Article  Google Scholar 

  5. Dovbeshko, G., Fesenko, O., Gnatyk, O., Shtogun, Y., Woods, L., Bertarione, S., Damin, A., Scarano, D., Adriano, Z.: Nucleic Acid Interaction and Interfaces with Single-Walled Carbon Nanotubes. In: Jose, M. (ed.) Carbon Nanotubes. InTech (2010)

  6. Soljacić, M., Joannopoulos, J.D.: Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 3, 211–219 (2004). https://doi.org/10.1038/nmat1097

    Article  ADS  Google Scholar 

  7. Zaytsev, K.I., Katyba, G.M., Yakovlev, E.V., Gorelik, V.S., Yurchenko, S.O.: Band-gap nonlinear optical generation: the structure of internal optical field and the structural light focusing. J. Appl. Phys. 115, 213505 (2014). https://doi.org/10.1063/1.4880299

    Article  ADS  Google Scholar 

  8. Deparis, O., Mouchet, S.R., Su, B.-L.: Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption? Phys. Chem. Chem. Phys. 17, 30525–30532 (2015). https://doi.org/10.1039/C5CP04983K

    Article  Google Scholar 

  9. Sapienza, R., Leonetti, M., Froufe-Pérez, L.S., Galisteo-López, J.F., Conti, C., Lopez, C.: Optical amplification enhancement in photonic crystals. Phys. Rev. A. 83, (2011). https://doi.org/10.1103/PhysRevA.83.023801

  10. Ganesh, N., Zhang, W., Mathias, P.C., Chow, E., Soares, J.A.N.T., Malyarchuk, V., Smith, A.D., Cunningham, B.T.: Enhanced fluorescence emission from quantum dots on a photonic crystal surface. Nat. Nanotechnol. 2, 515–520 (2007). https://doi.org/10.1038/nnano.2007.216

    Article  Google Scholar 

  11. Chen, W., Long, K.D., Yu, H., Tan, Y., Choi, J.S., Harley, B.A., Cunningham, B.T.: Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy. Analyst 139, 5954–5963 (2014). https://doi.org/10.1039/C4AN01508H

    Article  ADS  Google Scholar 

  12. Chen, W., Long, K.D., Lu, M., Chaudhery, V., Yu, H., Choi, J.S., Polans, J., Zhuo, Y., Harley, B.A.C., Cunningham, B.T.: Photonic crystal enhanced microscopy for imaging of live cell adhesion. Analyst 138, 5886 (2013). https://doi.org/10.1039/c3an01541f

    Article  ADS  Google Scholar 

  13. Boiko, V.V., Fesenko, O.M., Gorchev, V.F., Karakhim, S.O., Dolgov, L., Kiisk, V., Sildos, I., Gorelik, V.S., Dovbeshko, G.I.: Luminescent imaging of biological molecules and cells on the photonic crystal surface. In: Fesenko, O., Yatsenko, L., Brodin, M. (eds.) Nanomaterials Imaging Techniques, Surface Studies, and Applications, pp. 253–262. Springer New York, New York, NY (2013)

    Chapter  Google Scholar 

  14. Dovbeshko, G.I., Fesenko, O.M., Boyko, V.V., Gorchev, V.F., Karakhim, S.O., Gridina, N.Y., Gorelik, V.S., Moiseyenko, V.N.: Novel photoluminescence-enhancing substrates for image formation of biological objects. Ukr. J. Phys. 57, 732–738 (2012)

    Google Scholar 

  15. Stöber, W., Fink, A., Bohn, E.: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5

    Article  ADS  Google Scholar 

  16. Samarov, E.N., Mokrushin, A.D., Masalov, V.M., Abrosimova, G.E., Emel’chenko, G.A.: Structural modification of synthetic opals during thermal treatment. Phys. Solid State 48, 1280–1283 (2006). https://doi.org/10.1134/S1063783406070109

    Article  ADS  Google Scholar 

  17. Lаndo, D.Y., Еgorova, V.P., Krot, V.I., Akhrem, A.A.: Determination of protein admixture in highly purified DNA preparations. Мolеculаr Biol. 30, 418–421 (1996)

    Google Scholar 

  18. Sohn, J.S., Kwon, Y.W., Jin, J.I., Jo, B.W.: DNA-templated preparation of gold nanoparticles. Mol. Basel Switz. 16, 8143–8151 (2011). https://doi.org/10.3390/molecules16108143

    Google Scholar 

  19. Ilchenko, O., Pilgun, Y., Makhnii, T., Slipets, R., Reynt, A., Kutsyk, A., Slobodianiuk, D., Koliada, A., Krasnenkov, D., Kukharskyy, V.: High-speed line-focus Raman microscopy with spectral decomposition of mouse skin. Vib. Spectrosc. 83, 180–190 (2016). https://doi.org/10.1016/j.vibspec.2016.02.003

    Article  Google Scholar 

  20. Boiko, V., Dovbeshko, G., Dolgov, L., Kiisk, V., Sildos, I., Loot, A., Gorelik, V.: Angular shaping of fluorescence from synthetic opal-based photonic crystal. Nanoscale Res. Lett. 10, (2015). https://doi.org/10.1186/s11671-015-0781-y

  21. Boyko, V., Dovbeshko, G., Fesenko, O., Gorelik, V., Moiseyenko, V., Romanyuk, V., Shvets, T., Vodolazkyy, P.: New optical properties of synthetic opals infiltrated by DNA. Mol. Cryst. Liq. Cryst. 535, 30–41 (2011). https://doi.org/10.1080/15421406.2011.537888

    Article  Google Scholar 

  22. Glinka, Y., Lin, S.-H., Chen, Y.-T.: Two-photon-excited luminescence and defect formation in SiO2 nanoparticles induced by 6.4-eV ArF laser light. Phys. Rev. B 62, 4733–4743 (2000). https://doi.org/10.1103/PhysRevB.62.4733

    Article  ADS  Google Scholar 

  23. Ghomi, M., Letellier, R., Liquier, J., Taillandier, E.: Interpretation of DNA vibrational spectra by normal coordinate analysis. Int. J. BioChemiPhysics 22, 691–699 (1990)

    Article  Google Scholar 

  24. Olsztyska-Janus, S., Gsior-Gogowska, M., Szymborska-Maek, K., Czarnik-Matusewicz, B., Komorowsk, M.: Specific Applications of Vibrational Spectroscopy in Biomedical Engineering. In: Olsztynska, S. (ed.) Biomedical Engineering, Trends, Research and Technologies. InTech (2011)

  25. Schrader, B., Bougeard, D. eds: Infrared and Raman spectroscopy: methods and applications. VCH, Weinheim; New York (1995)

  26. Bloomfield, V.A.: DNA condensation by multivalent cations. Biopolymers 44, 269–282 (1997). https://doi.org/10.1002/(SICI)1097-0282(1997)44:3<269::AID-BIP6>3.0.CO;2-T

    Article  Google Scholar 

  27. Tajmir-Riahi, H.A., Ahmad, R., Naoui, M.: Interaction of calf-thymus DNA with trivalent la, Eu, and Tb ions. Metal ion binding, DNA condensation and structural features. J. Biomol. Struct. Dyn. 10, 865–877 (1993). https://doi.org/10.1080/07391102.1993.10508680

    Article  Google Scholar 

  28. Kornilova, S.V., Miskovsky, P., Tomkova, A., Kapinos, L.E., Hackl, E.V., Andrushchenko, V.V., Grigoriev, D.N., Blagoi, Y.P.: Vibrational spectroscopic studies of the divalent metal ion effect on DNA structural transitions. J. Mol. Struct. 408–409, 219–223 (1997). https://doi.org/10.1016/S0022-2860(96)09671-8

    Article  Google Scholar 

  29. Storm, C., Nelson, P.C.: Theory of high-force DNA stretching and overstretching. Phys. Rev. E 67, (2003). https://doi.org/10.1103/PhysRevE.67.051906

  30. Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M.: Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997). https://doi.org/10.1016/S0006-3495(97)78780-0

    Article  ADS  Google Scholar 

  31. Zehfus, M.H., Johnson, W.C.: Conformation of P-form DNA. Biopolymers 23, 1269–1281 (1984). https://doi.org/10.1002/bip.360230711

    Article  Google Scholar 

  32. Lumerical Computational Solutions. Lumerical Inc.

  33. Taflove, A., Hagness, S.C.: Computational Electrodynamics: the Finite-Difference Time-Domain Method. Artech House, Boston (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the program of NAS of Ukraine № ВЦ-156 and scholarships of NASU for young scientists. We are grateful to Prof. Vladimir Gorelik from the P.N. Lebedev Physical Institute of Russian Academy of Sciences for the samples of synthetic opals, Prof. Dmitrij Lando from Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus for the ultra-pure calf thymus DNA fibers and Viktor Sobolev from the Technical Centre of NASU for the SEM imaging of synthetic opals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Boiko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boiko, V.V., Romanyuk, V.R., Gnatyuk, O.P. et al. Vibrational spectra of DNA in the confined interglobular volume of photonic crystal. J Biol Phys 44, 101–116 (2018). https://doi.org/10.1007/s10867-018-9480-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-018-9480-0

Keywords

PACS

Navigation