Advertisement

Journal of Biological Physics

, Volume 43, Issue 1, pp 113–125 | Cite as

On the mechanical analogue of DNA

  • Ludmila Yakushevich
Original Paper

Abstract

The creation of mechanical analogues of biological systems is known as a useful instrument that helps to understand better the dynamical mechanisms of the functioning of living organisms. Mechanical analogues of biomolecules are usually constructed for imitation of their internal mobility, which is one of the most important properties of the molecules. Among the different types of internal motions, angular oscillations of nitrous bases are of special interest because they make a substantial contribution to the base pairs opening that in turn is an important element of the process of the DNA–protein recognition. In this paper, we investigate the possibility to construct a mechanical analogue for imitation of angular oscillations of nitrous bases in inhomogeneous DNA. It is shown that the analogue has the form of a mechanical chain of non-identical pendulums that oscillate in the gravitational field of the Earth and coupled by identical springs. The masses and lengths of pendulums, as well as the distances between neighboring pendulums and the rigidity of springs are calculated. To illustrate the approach, we present the result of construction of the mechanical analogue of the fragment of the sequence of bacteriophage T7D.

Keywords

DNA dynamics Oscillations of nitrous bases Bacteriophage T7D Chain of non-identical pendulums Modified sine-Gordon equation 

Notes

Acknowledgements

The author acknowledges Mario Salerno for interesting and fruitful discussions. She also acknowledges the chief of the Department Evgenii Fesenko for providing general support of the work.

Compliance with ethical standards

Conflict of interest

The author declares that she has no conflicts of interest.

References

  1. 1.
    Peyrard, M., Dauxois, T.: Can we model DNA at the mesoscale? Phys. Life Rev. 11, 173–175 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    Beveridge, D.L., Cheatham, T.E., Mezei, M.: The ABCs of molecular dynamics simulations on B-DNA. J. Biosci. 37, 379–397 (2012)CrossRefGoogle Scholar
  3. 3.
    Galindo-Murillo, R., Roe, D.R., Cheatham, T.E.: Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC). Biochim. Biophys. Acta 1850, 1041–1058 (2015)CrossRefGoogle Scholar
  4. 4.
    Foloppe, N., Guéroult, M., Hartmann, B.: Simulating DNA by molecular dynamics: aims, methods, and validation. Methods Mol. Biol. 924, 445–468 (2013)CrossRefGoogle Scholar
  5. 5.
    Langley, D.R.: Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results. J. Biomol. Struct. Dyn. 16, 487–509 (1998)CrossRefGoogle Scholar
  6. 6.
    Shigaev, A.S., Ponomarev, O.A., Lakhno, V.D.: Theoretical and experimental investigations of DNA open states. Math. Biol. Bioinform. 8, 553–664 (2013)CrossRefGoogle Scholar
  7. 7.
    Yakushevich, L.V.: Nonlinear Physics of DNA. Wiley, Chichester (2004)CrossRefMATHGoogle Scholar
  8. 8.
    Peyrard, M.: Nonlinear dynamics and statistical physics of DNA. Nonlinearity 17, R1–R40 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Scott, A.C.: A nonlinear Klein-Gordon equation. Am. J. Phys. 37, 52–61 (1969)ADSCrossRefGoogle Scholar
  10. 10.
    Fradkov, A.L., Andrievsky, B.: Control of wave motion in the chain of pendulums. In Proceedings of the 17th World Congress on The international Federation of Automatic Control, Seoul, Korea, pp. 3136–3141 (2008)Google Scholar
  11. 11.
    Model of Scott: http://tm.spbstu.ru/Moдeль_Cкoттa (in Russian) (1984)
  12. 12.
    Xu, H-Q., Tang, Y.: Parametrically driven solitons in a chain of nonlinear coupled pendula with an impurity. Chin. Phys. Lett. 23, 1544–1547 (2006)Google Scholar
  13. 13.
    Chacón, R., Martínez, P.J.: Controlling chaotic solitons in Frenkel–Kontorova chains by disordered driving forces. Phys. Rev. Lett. 98, 224102 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Khomeriki, R., Leon, J.: Tristability in the pendula chain. Phys. Rev. E 78, 057202 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Saadatpour, A., Levi, M.: Traveling waves in chains of pendula. Phys. D 244, 68–73 (2013)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Englander, S.W., Kallenbach, N.R., Heeger, A.J., Krumhansl, J.A., Litwin, A.: Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. Natl. Acad. Sci. U. S. A. 77, 7222–7226 (1980)ADSCrossRefGoogle Scholar
  17. 17.
    Cuenda, S., Sánchez, A.: Nonlinear excitations in DNA: aperiodic models versus actual genome sequences. Phys. Rev. E 70, 051903 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Barbi, B., Place, C., Popkov, V., Salerno, M.: Base-sequence-dependent sliding of proteins on DNA. Phys. Rev. E 70, 041901 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Gaeta, G.: Solitons in the Yakushevich model of DNA. beyond the contact approximation. Phys. Rev. E 74, 021921 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    González, J.A., Cuenda, S., Sánchez, A.: Kink dynamics in spatially inhomogeneous media: the role of internal modes. Phys. Rev. E 75, 036611 (2007)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Gaeta, G., Venier, L.: Solitary waves in twist-opening models of DNA dynamics. Phys. Rev. E 78, 011901 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Cadoni, M., De Leo, R., Demelio, S., Gaeta, G.: Propagation of twist solitons in real DNA chains. Journal of Nonlinear Mathematical Physics 17, 557–569 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Theodorakopoulos, N.: Melting of genomic DNA: predictive modeling by nonlinear lattice dynamics. Phys. Rev. E 82, 021905 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Cuenda, S., Quintero, N.R., Sánchez, A.: Sine-Gordon wobbles through Bäcklund transformations. Discrete Contin. Dyn. Syst. S 4, 1047–1056 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Derks, G., Gaeta, G.: A minimal model of DNA dynamics in interaction with RNA-polymerase. Phys. D 240, 1805–1817 (2011)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Theodorakopoulos, N., Peyrard, M.: Base pair openings and temperature dependence of DNA flexibility. Phys. Rev. Lett. 108, 078104 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Krasnobaeva, L.A., Yakushevich, L.V.: Rotational dynamics of bases in the gene coding interferon alpha 17 (IFNA17). J. Bioinforma. Comput. Biol. 13, 1540002 (2015)CrossRefGoogle Scholar
  28. 28.
    Grinevich, A.A., Yakushevich, L.V.: Kinks behavior near the boundaries separating homogeneous regions of DNA. Math. Biol. Bioinform. 10, 164–177 (2015)CrossRefGoogle Scholar
  29. 29.
    Grinevich, A.A., Ryasik, A.A., Yakushevich, L.V.: Trajectories of DNA bubbles. Chaos, Solitons Fractals 75, 62–75 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Hakim, M.B., Lindsay, S.M., Powell, J.: The speed of sound in DNA. Biopolymers 23, 1185–1192 (1984)CrossRefGoogle Scholar
  31. 31.
    Ozoline, O.N., Masulis, I.S., Chasov, V.V., Demina, N.N., Kamzolova, S.G.: Structural and functional analysis of T7D promoter and its complex with E. coli RNA polymerase. Russ. Chem. Bull. 44, 1321–1326 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Cell Biophysics of the Russian Academy of SciencesPushchinoRussian Federation

Personalised recommendations