Skip to main content
Log in

On the mechanical analogue of DNA

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The creation of mechanical analogues of biological systems is known as a useful instrument that helps to understand better the dynamical mechanisms of the functioning of living organisms. Mechanical analogues of biomolecules are usually constructed for imitation of their internal mobility, which is one of the most important properties of the molecules. Among the different types of internal motions, angular oscillations of nitrous bases are of special interest because they make a substantial contribution to the base pairs opening that in turn is an important element of the process of the DNA–protein recognition. In this paper, we investigate the possibility to construct a mechanical analogue for imitation of angular oscillations of nitrous bases in inhomogeneous DNA. It is shown that the analogue has the form of a mechanical chain of non-identical pendulums that oscillate in the gravitational field of the Earth and coupled by identical springs. The masses and lengths of pendulums, as well as the distances between neighboring pendulums and the rigidity of springs are calculated. To illustrate the approach, we present the result of construction of the mechanical analogue of the fragment of the sequence of bacteriophage T7D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Peyrard, M., Dauxois, T.: Can we model DNA at the mesoscale? Phys. Life Rev. 11, 173–175 (2014)

    Article  ADS  Google Scholar 

  2. Beveridge, D.L., Cheatham, T.E., Mezei, M.: The ABCs of molecular dynamics simulations on B-DNA. J. Biosci. 37, 379–397 (2012)

    Article  Google Scholar 

  3. Galindo-Murillo, R., Roe, D.R., Cheatham, T.E.: Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC). Biochim. Biophys. Acta 1850, 1041–1058 (2015)

    Article  Google Scholar 

  4. Foloppe, N., Guéroult, M., Hartmann, B.: Simulating DNA by molecular dynamics: aims, methods, and validation. Methods Mol. Biol. 924, 445–468 (2013)

    Article  Google Scholar 

  5. Langley, D.R.: Molecular dynamic simulations of environment and sequence dependent DNA conformations: the development of the BMS nucleic acid force field and comparison with experimental results. J. Biomol. Struct. Dyn. 16, 487–509 (1998)

    Article  Google Scholar 

  6. Shigaev, A.S., Ponomarev, O.A., Lakhno, V.D.: Theoretical and experimental investigations of DNA open states. Math. Biol. Bioinform. 8, 553–664 (2013)

    Article  Google Scholar 

  7. Yakushevich, L.V.: Nonlinear Physics of DNA. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  8. Peyrard, M.: Nonlinear dynamics and statistical physics of DNA. Nonlinearity 17, R1–R40 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Scott, A.C.: A nonlinear Klein-Gordon equation. Am. J. Phys. 37, 52–61 (1969)

    Article  ADS  Google Scholar 

  10. Fradkov, A.L., Andrievsky, B.: Control of wave motion in the chain of pendulums. In Proceedings of the 17th World Congress on The international Federation of Automatic Control, Seoul, Korea, pp. 3136–3141 (2008)

  11. Model of Scott: http://tm.spbstu.ru/Moдeль_Cкoттa (in Russian) (1984)

  12. Xu, H-Q., Tang, Y.: Parametrically driven solitons in a chain of nonlinear coupled pendula with an impurity. Chin. Phys. Lett. 23, 1544–1547 (2006)

  13. Chacón, R., Martínez, P.J.: Controlling chaotic solitons in Frenkel–Kontorova chains by disordered driving forces. Phys. Rev. Lett. 98, 224102 (2007)

    Article  ADS  Google Scholar 

  14. Khomeriki, R., Leon, J.: Tristability in the pendula chain. Phys. Rev. E 78, 057202 (2008)

    Article  ADS  Google Scholar 

  15. Saadatpour, A., Levi, M.: Traveling waves in chains of pendula. Phys. D 244, 68–73 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Englander, S.W., Kallenbach, N.R., Heeger, A.J., Krumhansl, J.A., Litwin, A.: Nature of the open state in long polynucleotide double helices: possibility of soliton excitations. Proc. Natl. Acad. Sci. U. S. A. 77, 7222–7226 (1980)

    Article  ADS  Google Scholar 

  17. Cuenda, S., Sánchez, A.: Nonlinear excitations in DNA: aperiodic models versus actual genome sequences. Phys. Rev. E 70, 051903 (2004)

    Article  ADS  Google Scholar 

  18. Barbi, B., Place, C., Popkov, V., Salerno, M.: Base-sequence-dependent sliding of proteins on DNA. Phys. Rev. E 70, 041901 (2004)

    Article  ADS  Google Scholar 

  19. Gaeta, G.: Solitons in the Yakushevich model of DNA. beyond the contact approximation. Phys. Rev. E 74, 021921 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. González, J.A., Cuenda, S., Sánchez, A.: Kink dynamics in spatially inhomogeneous media: the role of internal modes. Phys. Rev. E 75, 036611 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Gaeta, G., Venier, L.: Solitary waves in twist-opening models of DNA dynamics. Phys. Rev. E 78, 011901 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Cadoni, M., De Leo, R., Demelio, S., Gaeta, G.: Propagation of twist solitons in real DNA chains. Journal of Nonlinear Mathematical Physics 17, 557–569 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Theodorakopoulos, N.: Melting of genomic DNA: predictive modeling by nonlinear lattice dynamics. Phys. Rev. E 82, 021905 (2010)

    Article  ADS  Google Scholar 

  24. Cuenda, S., Quintero, N.R., Sánchez, A.: Sine-Gordon wobbles through Bäcklund transformations. Discrete Contin. Dyn. Syst. S 4, 1047–1056 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Derks, G., Gaeta, G.: A minimal model of DNA dynamics in interaction with RNA-polymerase. Phys. D 240, 1805–1817 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Theodorakopoulos, N., Peyrard, M.: Base pair openings and temperature dependence of DNA flexibility. Phys. Rev. Lett. 108, 078104 (2012)

    Article  ADS  Google Scholar 

  27. Krasnobaeva, L.A., Yakushevich, L.V.: Rotational dynamics of bases in the gene coding interferon alpha 17 (IFNA17). J. Bioinforma. Comput. Biol. 13, 1540002 (2015)

    Article  Google Scholar 

  28. Grinevich, A.A., Yakushevich, L.V.: Kinks behavior near the boundaries separating homogeneous regions of DNA. Math. Biol. Bioinform. 10, 164–177 (2015)

    Article  Google Scholar 

  29. Grinevich, A.A., Ryasik, A.A., Yakushevich, L.V.: Trajectories of DNA bubbles. Chaos, Solitons Fractals 75, 62–75 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Hakim, M.B., Lindsay, S.M., Powell, J.: The speed of sound in DNA. Biopolymers 23, 1185–1192 (1984)

    Article  Google Scholar 

  31. Ozoline, O.N., Masulis, I.S., Chasov, V.V., Demina, N.N., Kamzolova, S.G.: Structural and functional analysis of T7D promoter and its complex with E. coli RNA polymerase. Russ. Chem. Bull. 44, 1321–1326 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges Mario Salerno for interesting and fruitful discussions. She also acknowledges the chief of the Department Evgenii Fesenko for providing general support of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludmila Yakushevich.

Ethics declarations

Conflict of interest

The author declares that she has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakushevich, L. On the mechanical analogue of DNA. J Biol Phys 43, 113–125 (2017). https://doi.org/10.1007/s10867-016-9437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-016-9437-0

Keywords

Navigation