Journal of Biological Physics

, Volume 40, Issue 3, pp 275–283 | Cite as

A spectroscopic investigation of the interaction between c-MYC DNA and tetrapyridinoporphyrazinatozinc(II)

  • Leila Hassani
  • Zahra Fazeli
  • Elham Safaei
  • Hossein Rastegar
  • Minoo Akbari
Original Paper


The c-MYC gene plays an important role in the regulation of cell proliferation and growth and it is overexpressed in a wide variety of human cancers. Around 90% of c-MYC transcription is controlled by the nuclease-hypersensitive element III1 (NHE III1), whose 27-nt purine-rich strand has the ability to form a G-quadruplex structure under physiological conditions. Therefore, c-MYC DNA is an attractive target for drug design, especially for cancer chemotherapy. Here, the interaction of water-soluble tetrapyridinoporphyrazinatozinc(II) with 27-nt G-rich strand (G/c-MYC), its equimolar mixture with the complementary sequence (GC/c-MYC) and related C-rich oligonucleotide (C/c-MYC) is investigated. Circular dichroism (CD) measurements of the G-rich 27-mer oligonucleotide in 150 mM KCl, pH 7 demonstrate a spectral signature consistent with parallel G-quadruplex DNA. Furthermore, the CD spectrum of the GC rich oligonucleotide shows characteristics of both duplex and quadruplex structures. Absorption spectroscopy implies that the complex binding of G/c-MYC and GC/c-MYC is a two-step process; in the first step, a very small red shift and hypochromicity and in the second step, a large red shift and hyperchromicity are observed in the Q band. Emission spectra of zinc porphyrazine are quenched upon addition of three types of DNA. According to the results of spectroscopy, it can be concluded the dominant binding mode is probably, outside binding and end stacking.


Zinc porphyrazine c-MYC promoter DNA binding Spectroscopy 



Financial support for this work was provided by the Research Council of Institute for Advanced Studies in Basic Sciences.


  1. 1.
    Meyer, N., Penn, L.Z.: Reflecting on 25years with MYC. Nat. Rev. Cancer 8, 976–790 (2008)CrossRefGoogle Scholar
  2. 2.
    Pelengaris, S., Rudolph, B., Littlewood, T.: Action of Myc in vivo-proliferation and apoptosis. Curr. Opin. Genet. Dev. 10, 100–105 (2000)CrossRefGoogle Scholar
  3. 3.
    Facchini, L.M., Penn, L.Z.: The molecular role of Myc in growth and transformation: recent discoveries to new insights. FASEB J. 12, 633–651 (1998)Google Scholar
  4. 4.
    Nema, R.: c-Myc (Oncogenic) transcription factor. Ind. J. Fund. Appl. Life Sci. 1, 2231–6345 (2011)Google Scholar
  5. 5.
    Lutz, W., Leon, J., Eilers, M.: Eilers, Contributions of Myc to tumorigenesis. Biochim. Biophys. Acta 1602, 61–71 (2002)Google Scholar
  6. 6.
    Marcu, K.B., Bossone, S.A., Patel, A.J.: Myc function and regulation. Annu. Rev. Biochem. 61, 809–860 (1992)CrossRefGoogle Scholar
  7. 7.
    Simonsson, T., Pecinka, P., Kubista, M.: DNA tetraplex formation in the control region of c-Myc. Nucleic Acids Res. 26, 1167–1172 (1998)CrossRefGoogle Scholar
  8. 8.
    Sun, D., Hurley, L.H.: The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J. Med. Chem. 52, 2863–2874 (2009)CrossRefGoogle Scholar
  9. 9.
    Brooks, T.A., Hurley, L.H.: Targeting MYC expression through G-quadruplexes. Genes Cancer 1, 641–649 (2010)CrossRefGoogle Scholar
  10. 10.
    Yoon, J., Kang, H., Sung, J., Park, H. J., Hohng, S.: Highly polymorphic G-quadruplexes in the c-MYCPromoter. Bull. Korean Chem. Soc. 31, 1025–1028 (2010)CrossRefGoogle Scholar
  11. 11.
    Siddiqui-Jain, A, Grand, C.L, Bearss, D.J, Hurley, L.H.: Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. U.S.A. 99, 11593–1158 (2002)Google Scholar
  12. 12.
    Yang, D, Okamoto, K.: Structural insights into G-quadruplexes: towards new anticancer drugs. Future Med. Chem. 2, 619–646 (2010)CrossRefGoogle Scholar
  13. 13.
    Freyer, M.W., Buscaglia, R., Kaplan, K., Cashman, D., Hurley, L.H., Lewis, E.A.: Biophysical studies of the c-MYC NHE III1 promoter: model quadruplex interactions with a cationic porphyrin. Biophys. J 92, 2007–2015 (2007)CrossRefGoogle Scholar
  14. 14.
    Seenisamy, J., Bashyam, S., Gokhale, V., Vankayalapati, H., Sun, D., Siddiqui-Jain, A., Streiner, N., Shin-ya, K., White, E., Wilson, W.D., Hurley, L.H.: Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure. J. Am. Chem. Soc. 127, 2944–2959 (2005)CrossRefGoogle Scholar
  15. 15.
    Safaei, E., Ranjbar, B., Hasani, L.: A study on the self assembly of Fe(II) and dual binding of Ni(II) porphyrazines on CT-DNA. J. Porphyrins Phthalocyanines 11, 805–814 (2007)CrossRefGoogle Scholar
  16. 16.
    Asadi, M., Safaei, E., Ranjbar, B., Hasani, L.: Thermodynamic and spectroscopic study on the binding of cationic Zn(II) and Co(II) tetrapyridinoporphyrazines to calf thymus DNA: the role of the central metal in binding parameters. New J. Chem. 28, 1227–1234 (2004)CrossRefGoogle Scholar
  17. 17.
    Kelly, S M., Jess, T. J., Price, N.C.: How to study proteins by circular dichroism. Biochem. Biophys. Acta 1751, 119–139 (2005)Google Scholar
  18. 18.
    Kypr, J., Kejnovska, I., Renciuk, D., Vorlickova, M.: Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 37, 1713–1725 (2009)CrossRefGoogle Scholar
  19. 19.
    Paramasivan, S., Rujan, I., Bolton, P.H.: Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods 43, 324–331 (2007)CrossRefGoogle Scholar
  20. 20.
    Vorlickova, M., Kejnovska, I., Sagi, J., Renciuk, D., Bednarova, K., Motlova, J., Kypr, J.: Circular dichroism and guanine quadruplexes. Methods 57, 64–75 (2012)CrossRefGoogle Scholar
  21. 21.
    Anantha, N.V., Azam, M., Sheardy, R.D.: Porphyrin binding to quadruplexed T4G4. Biochemistry 37, 2709–2714 (1998)CrossRefGoogle Scholar
  22. 22.
    Yamashita, T., Uno, T., Ishikawa, Y.: Guanine quadruplex DNA by the binding of porphyrins with cationic side arms. Bioorg. Med. Chem. 13, 2423–2430 (2005)CrossRefGoogle Scholar
  23. 23.
    Ghazaryan, A.A., Dalyan, Y.B., Haroutiunian, S.G., Tikhomirova, A., Taulier, N., Wells, J.W., Chalikian, T.V.: Thermodynamics of interactions of water-soluble porphyrins with RNA duplexes. J. Am. Chem. Soc. 128, 1914–1921 (2006)CrossRefGoogle Scholar
  24. 24.
    Suh, D., Chaires, J.B.: Criteria for the mode of binding of DNA binding agents. Bioorg. Med. Chem. 3, 723–728 (1995)CrossRefGoogle Scholar
  25. 25.
    Nagesh, N., Sharma, V.K., Kumar, A.G., Lewis, E.A.: Effect of ionic strength on porphyrin drugs interaction with quadruplex DNA formed by the promoter region of C-myc and Bcl2 oncogenes. J. Nucleic Acids 2010, 1–9 (2010)CrossRefGoogle Scholar
  26. 26.
    Zhao, P., Xu, L., Huang, J., Fu, B., Yu, H., Ji, L.: Cationic porphyrin–anthraquinone dyads: modes of interaction with G-quadruplex DNA. Dyes Pigments 82, 81–87 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Leila Hassani
    • 1
  • Zahra Fazeli
    • 1
  • Elham Safaei
    • 2
  • Hossein Rastegar
    • 3
  • Minoo Akbari
    • 3
    • 4
  1. 1.Department of Biological SciencesInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  2. 2.Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  3. 3.Food and Drug Control Laboratory and Research CenterMinistry of Health and Medical Education TehranTehranIran
  4. 4.Faculty of New Sciences and Technologies (FNST)University of TehranTehranIran

Personalised recommendations