Journal of Biological Physics

, Volume 40, Issue 1, pp 41–53 | Cite as

Modeling anterograde and retrograde transport of short mobile microtubules from the site of axonal branch formation

Original Paper


This theoretical research is motivated by a recent model of microtubule (MT) transport put forward by Baas and Mozgova (Cytoskeleton 69:416–425, 2012). According to their model, in an axon all plus-end-distal mobile MTs move anterogradely while all minus-end-distal mobile MTs move retrogradely. Retrograde MT transport thus represents a mechanism by which minus-end-distal MTs are removed from the axon. We suggested equations that implement Baas and Mozgova’s model. We employed these equations to simulate transport of short mobile MTs from a region (such as the site of axonal branch formation) where MT severing activity results in generation of a large number of short MTs of both orientations. We obtained the exact and approximate transient solutions of these equations utilizing the Laplace transform technique. We applied the obtained solutions to calculate the average rates of anterograde and retrograde transport of short MTs.


Microtubule transport Neurons Molecular motors Exact solution 



The authors are indebted to the anonymous reviewers for their constructive comments. AVK gratefully acknowledges support of the Alexander von Humboldt Foundation though the Humboldt Research Award.


  1. 1.
    Baas, P.W., Mozgova, O.I.: A novel role for retrograde transport of microtubules in the axon. Cytoskeleton 69, 416–425 (2012)CrossRefGoogle Scholar
  2. 2.
    Wang, L., Brown, A.: Rapid movement of microtubules in axons. Curr. Biol. 12, 1496–1501 (2002)CrossRefGoogle Scholar
  3. 3.
    Baas, P., Karabay, A., Qiang, L.: Microtubules cut and run. Trends Cell Biol. 15, 518–524 (2005)CrossRefGoogle Scholar
  4. 4.
    Baas, P., Nadar, C., Myers, K.: Axonal transport of microtubules: the long and short of it. Traffic 7, 490–498 (2006)CrossRefGoogle Scholar
  5. 5.
    Goldstein, L.S.B., Yang, Z.H.: Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Ann. Rev. Neurosci. 23, 39–71 (2000)CrossRefGoogle Scholar
  6. 6.
    Lu, W., Fox, P., Lakonishok, M., Davidson, M.W., Gelfand, V.I.: Initial neurite outgrowth in Drosophila neurons is driven by kinesin-powered microtubule sliding. Curr. Biol. 23, 1018–1023 (2013)CrossRefGoogle Scholar
  7. 7.
    He, Y., Francis, F., Myers, K.A., Yu, W.Q., Black, M.M., Baas, P.W.: Role of cytoplasmic dynein in the axonal transport of microtubules and neurofilaments. J. Cell Biol. 168, 697–703 (2005)CrossRefGoogle Scholar
  8. 8.
    Ahmad, F., He, Y., Myers, K., Hasaka, T., Francis, F., Black, M., Baas, P.: Effects of dynactin disruption and dynein depletion on axonal microtubules. Traffic 7, 524–537 (2006)CrossRefGoogle Scholar
  9. 9.
    Myers, K.A., Baas, P.W.: Microtubule–actin interactions during neuronal development. In: Gallo, G., Lanier, L.M. (eds.) Neurobiology of Actin. Advances in Neurobiology, vol. 5, pp. 73–96. Springer, New York (2011)CrossRefGoogle Scholar
  10. 10.
    Hasaka, T., Myers, K., Baas, P.: Role of actin filaments in the axonal transport of microtubules. J. Neurosci. 24, 11291–11301 (2004)CrossRefGoogle Scholar
  11. 11.
    Zheng, Y., Wildonger, J., Ye, B., Zhang, Y., Kita, A., Younger, S.H., Zimmerman, S., Jan, L.Y., Jan, Y.N.: Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat. Cell Biol. 10, 1172–1180 (2008)CrossRefGoogle Scholar
  12. 12.
    Dent, E., Callaway, J., Szebenyi, G., Baas, P., Kalil, K.: Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J. Neurosci. 19, 8894–8908 (1999)Google Scholar
  13. 13.
    Yu, W., Liang Qiang, Solowska, J.M., Karabay, A., Korulu, S., Baas, P.W.: The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol. Biol. Cell 19, 1485–1498 (2008)CrossRefGoogle Scholar
  14. 14.
    Gibson, D.A., Ma, L.: Developmental regulation of axon branching in the vertebrate nervous system. Development 138, 183–195 (2011)CrossRefGoogle Scholar
  15. 15.
    Jung, P., Brown, A.: Modeling the slowing of neurofilament transport along the mouse sciatic nerve. Phys. Biol. 6, 046002 (2009)CrossRefGoogle Scholar
  16. 16.
    Li, Y., Jung, P., Brown, A.: Axonal transport of neurofilaments: a single population of intermittently moving polymers. J Neurosci. 32, 746–758 (2012)CrossRefGoogle Scholar
  17. 17.
    Myers, K.A., Baas, P.W.: Kinesin-5 regulates the growth of the axon by acting as a brake on its microtubule array. J. Cell Biol. 178, 1081–1091 (2007)CrossRefGoogle Scholar
  18. 18.
    King, S.J., Schroer, T.A.: Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2, 20–24 (2000)CrossRefGoogle Scholar
  19. 19.
    Toba, S., Watanabe, T.M., Yamaguchi-Okimoto, L., Toyoshima, Y.Y., Higuchi, H.: Overlapping hand-over-hand mechanism of single molecular motility of cytoplasmic dynein. Proc. Nat. Acad. Sci. U. S. A. 103, 5741–5745 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Kuznetsov, A.V.: An exact solution describing slow axonal transport of cytoskeletal elements: effect of a finite half-life. Proc. R. Soc. A Math. Phys. Eng. Sci. 468, 3384–3397 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Kuznetsov, A.V.: An exact solution of transient equations describing slow axonal transport. Comput. Methods Biomech Biomed. Eng. 16, 1232–1239 (2013)Google Scholar
  22. 22.
    Tytell, M., Brady, S., Lasek, R.: Axonal-transport of a subclass of tau-proteins—evidence for the regional differentiation of microtubules in neurons. Proc. Nat. Acad. Sci. U. S. A. 81, 1570–1574 (1984)ADSCrossRefGoogle Scholar
  23. 23.
    Galbraith, J.A., Reese, T.S., Schlief, M.L., Gallant, P.E.: Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon. Proc. Nat. Acad. Sci. U. S. A. 96, 11589–11594 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Roll-Mecak, A., Mcnally, F.J.: Microtubule-severing enzymes. Curr. Opin. Cell Biol. 22, 96–103 (2010)CrossRefGoogle Scholar
  25. 25.
    Black, M., Lasek, R.: Slow components of axonal-transport: two cytoskeletal networks. J. Cell Biol. 86, 616–623 (1980)CrossRefGoogle Scholar
  26. 26.
    Oblinger, M., Brady, S., McQuarrie, I., Lasek, R.: Cytotypic differences in the protein-composition of the axonally transported cytoskeleton in mammalian neurons. J. Neurosci. 7, 453–462 (1987)Google Scholar
  27. 27.
    Kuznetsov, I.A., Kuznetsov, A.V.: Analytical comparison between Nixon-Logvinenko and Jung-Brown theories of slow neurofilament transport in axons. Math. Biosci. 245, 331–339 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations