Journal of Biological Physics

, Volume 39, Issue 4, pp 665–671 | Cite as

Depletion effect and biomembrane budding

Original Paper


Depletion effects are well known to lead to phase separation in microsystems consisting of large and small particles with short-range repulsive interactions that act over macromolecular length scales. The equilibrium mechanics between an enveloped colloidal particle and a biomembrane caused by entropy is investigated by using a continuum model. We show that the favorable contact energy stems from entropy, which is sufficient to drive engulfment of the colloidal particle, and deformation of the biomembrane determines the resistance to the engulfment of the colloidal particle. The engulfment process depends on the ratio of the radii of the larger particle and smaller particles and the bending rigidity. The results show insights into the effects of depletion on biomembrane budding and nanoparticle transportation by a vesicle.


Depletion effects Cell adhesion and cell mechanics Biomembrane and vesicles Elasticity theory 



Acknowledgements are made to the National Natural Science Foundation of China under Grants NO.11047022, NO.11164004, NO.41061039 and NO.30770529. We are also grateful to the Guizhou provincial tracking key program of social development under Grants NO.SZ20113069 and SY20093086 and the Grant for Visiting Scholar of the Key Laboratory of Biorheological Science and Technology of Ministry of Education (Chongqing University).


  1. 1.
    Dinsmore, A.D., Yodh, A.G., Pine, D.J.: Phase diagrams of nearly-hard-sphere binary colloids. Phys. Rev. E 52, 4045–4057 (1995)CrossRefADSGoogle Scholar
  2. 2.
    Imhof, A., Dhont, J.K.G.: Experimental phase diagram of a binary colloidal hard-sphere mixture with a large size ratio. Phys. Rev. Lett. 75, 1662–1665 (1995)CrossRefADSGoogle Scholar
  3. 3.
    Steiner, U., Meller A., Stavans, J.: Entropy-driven phase separation in binary emulsions. Phys. Rev. Lett. 74, 4750–4753 (1995)CrossRefADSGoogle Scholar
  4. 4.
    Ilett, S.M., Orrock, A., Poon, W.C.K., Pusey, P.N.: Phase behavior of a model colloid-polymer mixture. Phys. Rev. E 51, 1344–1352 (1995)CrossRefADSGoogle Scholar
  5. 5.
    Kaplan, P.D., Rouke, J.L., Yodh, A.G.: Entropically driven surface phase separation in binary colloidal mixtures. Phys. Rev. Lett. 72, 582–585 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Ohshima, Y.N., Sakagami, H., Okumoto, K., et al.: Direct measurement of infinitesimal depletion force in a colloid-polymer mixture by laser radiation pressure. Phys. Rev. Lett. 78, 3963–3966 (1997)CrossRefADSGoogle Scholar
  7. 7.
    Minton, A.P.: Confinement as a determinant of macromolecular structure and reactivity. II. Effects of weakly attractive interactions between confined macrosolutes and confining structures. Biophys. J. 68, 1311–1322 (1995)CrossRefADSGoogle Scholar
  8. 8.
    Minton, A.P.: Confinement as a determinant of macromolecular structure and reactivity. Biophys. J. 63, 1090–1100 (1992)CrossRefADSGoogle Scholar
  9. 9.
    Wang, G.C.L. et al.: Hierarchical self-assembly of f-actin and cationic lipid complexes: stacked three-layer tubule networks. Science 288, 2035 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Dinsmore, A.D., Wong, D.T., et al.: Hard spheres in vesicles: curvature-induced forces and particle-induced curvature. Phys. Rev. Lett. 80, 409 (1998)CrossRefADSGoogle Scholar
  11. 11.
    Gefen, A.: Effects of virus size and cell stiffness on forces, work, and pressures driving membrane invagination in a receptor-mediated endocytosis. J. Biomech. Eng. 132, 084501 (2010)CrossRefGoogle Scholar
  12. 12.
    Hosek, M., Tang, J.X.: Polymer-induced bundling of F actin and the depletion force. Phys. Rev. E 69, 051907 (2010)CrossRefADSGoogle Scholar
  13. 13.
    Yuan, H.Y., Zhang, S.: Appl. Phys. Lett. 96, 033704 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Chaudhuri, A., Battaglia, G., et al.: The effect of interactions on the cellular uptake of nanoparticles. Phys. Biol. 8, 046002 (2011)CrossRefADSGoogle Scholar
  15. 15.
    Gao, H., Shi, W., Freund, L.B.: Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA 102, 9469–9474 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Vacha, R., Martinez-Veracoechea, F.J., Frenkel, D.: Receptor-mediated endocytosis of nanoparticles of various shapes. Nano. Lett. 11, 5391–5395 (2011)CrossRefADSGoogle Scholar
  17. 17.
    Asakura, S., Oosawa F.: Surface tension of high-polymer solutions. J. Chem. Phys. 22, 1255 (1954)ADSGoogle Scholar
  18. 18.
    Nelson, P.: Biological Physics: Energy, Information and Life. W. H. Freeman, New York and Basingstoke (2007)Google Scholar
  19. 19.
    Seifert, U., Lipowsky, R.: Adhesion of vesicles. Phys. Rev. A 42, 4768 (1990)CrossRefADSGoogle Scholar
  20. 20.
    Zhong-Can, O-Y., Liu, J-X., Xie, Y-Z.: Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phase. World Scientific, Singapore (1999)CrossRefGoogle Scholar
  21. 21.
    Lipowsky, R., Seifert, U.: Adhesion of vesicles and membranes. Mol. Cryst. Liq. Cryst. 202, 17–25 (1991)CrossRefGoogle Scholar
  22. 22.
    Evans, E., Rawicz, W.: Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys. Rev. Lett. 64, 2094–2097 (1990)CrossRefADSGoogle Scholar
  23. 23.
    Lipowsky, R., Zielinska, B.: Binding and unbinding of lipid membranes: a Monte Carlo study. Phys. Rev. Lett. 62, 1572–1575 (1989)CrossRefADSGoogle Scholar
  24. 24.
    Lipowsky, R., Sackmann, E.: The Structure and Dynamics of Membranes. Elsevier, Amsterdam (1995)Google Scholar
  25. 25.
    Pera, I., Stark, R., Kappl, M., et al.: Using the atomic force microscope to study the interaction between two solid supported lipid bilayers and the influence of synapsin I. Biophys. J. 87, 2446–2455 (2004)CrossRefADSGoogle Scholar
  26. 26.
    Das, C., Sheikh, K.H., Olmsted, P.D., et al.: Nanoscale mechanical probing of supported lipid bilayers with atomic force microscopy. Phys. Rev. E 82, 041920 (2010)CrossRefADSGoogle Scholar
  27. 27.
    Liu, Y., Hu, L., Wang, W., et al.: Theoretical analysis of the experimental results of interaction of the atomic force microscopy with lipid bilayers. Sci. Technol. Rev. 28, 48–51 (2010)ADSGoogle Scholar
  28. 28.
    Das, C., Sheikh, K.H., Olmsted, P.D., Connell, S.D.: Nanoscale mechanical probing of supported lipid bilayers with atomic force microscopy. Phys. Rev. E 82, 041920 (2010)CrossRefADSGoogle Scholar
  29. 29.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Butterworth-Heinemann, Oxford (1986)Google Scholar
  30. 30.
    Yi, X., Shi, X., Gao, H.: Cellular uptake of elastic nanoparticles. Phys. Rev. Lett. 107, 098101 (2011)CrossRefADSGoogle Scholar
  31. 31.
    Kola, N., Shi, Y., Tsvitov, M., Barlam, D., et al.: A stiffness switch in human immunodeficiency virus. Biophys. J. 92, 1777–1783 (2007)CrossRefADSGoogle Scholar
  32. 32.
    Kola, N., Tsvitova, M., Hevronia, L., et al.: The effect of purification method on the completeness of the immature HIV-1 Gag shell. J. Virol. Methods 169, 244–247 (2010)CrossRefGoogle Scholar
  33. 33.
    Kol, N., Gladnikoff, M., Barlam, D., et al.: Mechanical properties of murine leukemia virus particles: effect of maturation. Biophys. J. 91, 767–774 (2006)CrossRefADSGoogle Scholar
  34. 34.
    Michel, J.P., Ivanovska, I.L., Gibbons, M.M., et al.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. USA 103, 6184–6189 (2006)CrossRefADSGoogle Scholar
  35. 35.
    Sun, S.X., Wirtz, D.: Mechanics of enveloped virus entry into host cells. Biophys. J. L10 (2006)Google Scholar
  36. 36.
    Rozycki, B., Lipowsky, R., Weikl, T.R.: Segregation of receptor–ligand complexes in cell adhesion zones: phase diagrams and the role of thermal membrane roughness. New J. Phys. 12, 095003 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of ScienceGuizhou UniversityGuiyangChina
  2. 2.Institute of Biomedical Engineering and Health SciencesChangzhou UniversityJiangsuChina
  3. 3.Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering CollegeChongqing UniversityChongqingChina

Personalised recommendations