Advertisement

Journal of Biological Physics

, Volume 39, Issue 2, pp 183–199 | Cite as

Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids

  • Aylin Ahadi
  • Dan Johansson
  • Alex Evilevitch
Original Paper

Abstract

Viruses can be described as biological objects composed mainly of two parts: a stiff protein shell called a capsid, and a core inside the capsid containing the nucleic acid and liquid. In many double-stranded DNA bacterial viruses (aka phage), the volume ratio between the liquid and the encapsidated DNA is approximately 1:1. Due to the dominant DNA hydration force, water strongly mediates the interaction between the packaged DNA strands. Therefore, water that hydrates the DNA plays an important role in nanoindentation experiments of DNA-filled viral capsids. Nanoindentation measurements allow us to gain further insight into the nature of the hydration and electrostatic interactions between the DNA strands. With this motivation, a continuum-based numerical model for simulating the nanoindentation response of DNA-filled viral capsids is proposed here. The viral capsid is modeled as large- strain isotropic hyper-elastic material, whereas porous elasticity is adopted to capture the mechanical response of the filled viral capsid. The voids inside the viral capsid are assumed to be filled with liquid, which is modeled as a homogenous incompressible fluid. The motion of a fluid flowing through the porous medium upon capsid indentation is modeled using Darcy’s law, describing the flow of fluid through a porous medium. The nanoindentation response is simulated using three-dimensional finite element analysis and the simulations are performed using the finite element code Abaqus. Force-indentation curves for empty, partially and completely DNA-filled capsids are directly compared to the experimental data for bacteriophage λ. Material parameters such as Young’s modulus, shear modulus, and bulk modulus are determined by comparing computed force-indentation curves to the data from the atomic force microscopy (AFM) experiments. Predictions are made for pressure distribution inside the capsid, as well as the fluid volume ratio variation during the indentation test.

Keywords

Capsid nanoindentation AFM Darcy’s law Finite element simulations Spring constant 

References

  1. 1.
    Ivanovska, I.L., de Pablo, P.J., Ibarra, B., Sgalari, G., MacKintosh, F.C., Carrascosa, J.L., Schmidt, C.F., Wuite, G.J.: Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl. Acad. Sci. U.S.A. 101(20), 7600–7605 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Ivanovska, I.L., Wuite, G.J., Jönsson, B., Evilevitch, A: Internal DNA pressure modifies stability of WT phage. Proc. Natl. Acad. Sci. U.S.A. 104, 9603–9608 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Michel, J.P., Ivanovska,I.L., Gibbons, M.M., Klug, W.S., Knobler, C.M., Wuite, G.J., Schmidt, C.F.: Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl. Acad. Sci. U.S.A. 103(16), 6184–6189 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Carrasco, C., Carreira, A., Schaap, I.A.T., Serena, P.A., Gomez-Herrero, J., Mateu, M.G., Pablo, P.J.: DNA-mediated anisotropic mechanical reinforcement of a virus. Proc. Natl. Acad. Sci. U.S.A. 103(37), 13706–13711 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Kol, N., Gladnikoff, M., Barlam, D., Shneck, R.Z., Rein, A., Rousso, I.: Mechanical properties of murine leukemia virus particles: effects and maturation. Biophys. J. 91(2), 767–774 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Kol, N., Shi, Y., Tsvitov, M., Barlam, D., Shneck, R.Z., Kay, M.S., Rousso, I.: A stiffness switch in human immunodeficiency virus. Biophys. J. 92(5), 1777–1783 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Roos, W.H., Radtke, K., Kniesmeijer, E., Geertsema, H., Sodeik, B., Wuite, G.J.L.: Scaffold expulsion and genome packaging trigger stabilization of Herpes Simplex Virus capsids. Proc. Natl. Acad. Sci. U.S.A. 106, 9673–9678 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Roos, W.H., Geertsema, H., May, E.R., Brooks, C.L., Johnson, J.E., Wuite, G.J.L.: Mechanics of bacteriophage maturation. Proc. Natl. Acad. Sci. U.S.A. 109, 2342–2347 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Zandi, R., Reguera, D., Bruinsma, R.F., Gelbart, W.M., Rudnick, J.: Origin of icosahedral symmetry in viruses. Proc. Natl. Acad. Sci. U.S.A. 101(15), 556–560 (2004)Google Scholar
  10. 10.
    Zandi, R., Reguera, D.: Mechanical properties of viral capsids. Phys. Rev. E 72(2), Art. No. 021917 Part 1 (2005)Google Scholar
  11. 11.
    Ahadi, A., Colomo, J., Evilevitch, A.: Three-dimensional simulation of nanoindentation response of viral capsids. Shape and size effects. J. Phys. Chem. B 113(11), 3370–3378 (2009)CrossRefGoogle Scholar
  12. 12.
    Evilevitch, A., Lavelle, L., Knobler, C.M., Raspaud, E., Gelbart, W.M.: Osmotic pressure inhibition of DNA ejection from phage. Proc. Natl. Acad. Sci. U.S.A. 100, 9292–9295 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Nurmemmedov, E., Castelnovo, M., Medina, E., Catalano, C.E., Evilevitch, A.: Challenging packaging limits and infectivity of phage lambda. J. Mol. Biol. (2011)Google Scholar
  14. 14.
    Lidmar, J., Mirny, L., Nelson, D.R.: Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68(5), Art. No. 051910 Part 1 (2003)Google Scholar
  15. 15.
    Widom, M., Lidmar, J., Nelson, D.R.: Soft modes near the buckling transition of icosahedral shells. Phys. Rev. E 76(3), Art. No. 031911 Part 1 (2007)Google Scholar
  16. 16.
    Nguyen, T.T., Bruinsma, R.F., Gelbart, W.M.: Elasticity theory and shape transitions of viral shells. Phys. Rev. E 72(5), Art. No. 051923 Part 1 (2005)Google Scholar
  17. 17.
    Vliegenthart, G.A., Gompper, G.: Mechanical deformation of spherical viruses with icosahedral symmetry. Biophys. J. 91(3), 834–841 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Arkhipov, A., Roos, W.H., Wuite, G.J.L., Schulten, K.: Elucidating the mechanism behind irreversible deformation of viral capsids. Biophys. J. 97(7), 2061–2069 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Zink, M., Grubmuller, H.: Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys. J. 97(4), 1350–1363 (2009)CrossRefGoogle Scholar
  20. 20.
    Cieplak, M., Robbins, M.O.: Nanoindentation of virus capsids in a molecular model. J. Chem. Phys. 132(1), Art. No. 015101 (2010)Google Scholar
  21. 21.
    May, E.R., Brooks, C.L.: Determination of viral capsid elastic properties from equilibrium thermal fluctuations. Phys. Rev. Lett. 106(18), Art. No. 188101 (2011)Google Scholar
  22. 22.
    May, E.R., Aggarwal, A., Klug, W.S., Brooks, C.L.: Viral capsid equilibrium dynamics reveals nonuniform elastic properties. Biophys. J. 100(11), L59–L61 (2011)CrossRefGoogle Scholar
  23. 23.
    Rau, D.C., Lee, B., Parsegian, V.A.: Measurement of the repulsive force between poly-electrolyte molecules in ionic solution - hydration forces between parallel DNA double helices. Proc. Natl Acad. Sci. U.S.A. 81, 2621–2625 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    Parsegian, V.A., Rand, R.P., Fuller, N.L., Rau, D.C.: Osmotic stress for the direct measurement of intermolecular forces. Methods Enzymol. 127, 400–416 (1986)CrossRefGoogle Scholar
  25. 25.
    Qiu, X.Y., Rau, D.C., Parsegian, V.A., Fang, L.T., Knobler, C.M., Gelbart, W.M.: Salt-dependent DNA-DNA spacings in intact bacteriophage lambda reflect relative importance of DNA self-repulsion and bending energies. Phys. Rev. Lett. 106(2), Art. No. 028102 (2011)Google Scholar
  26. 26.
    Gibbons, M.M., Klug, W.S.: Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys. Rev. E 75(3), Art. No. 031901 Part 1 (2007)Google Scholar
  27. 27.
    Coussy, O.: Poromechanics. John Wiley & Sons (2004)Google Scholar
  28. 28.
    Wood, D.M: Critical State Soil Mechanics. Cambridge University Press (1990)Google Scholar
  29. 29.
    Lander, G., Evilevitch, A., Jeembaeva, M., Potter, C.S., Carragher, B., Johnson, J.E.: Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by Cryo-EM. Structure 16, 1399–1406 (2007)CrossRefGoogle Scholar
  30. 30.
    Ahadi, A., Krenk, S.: Characteristic state plasticity for granular materials: part II: model calibration and results. Int. J. Solids Struct. 37(43), 6361–6380 (2000)MATHCrossRefGoogle Scholar
  31. 31.
    SIMULIA: Abaqus 6.11 documentation, Abaqus Theory ManualGoogle Scholar
  32. 32.
    Mathai, J.C., Tristram-Nagle, S., Nagle, J.F., Zeidel, M.L.: Structural determinants of water permeability through the Lipid membrane. J. Gen. Physiol. 131(1), 69–76 (2008)CrossRefGoogle Scholar
  33. 33.
    Ahadi, A.: Determination of hyperelastic properties of viral capsids using finite element calculation and nanoindentation. Journal of Nanoengineering and Nanosystems 225(43), 75–84 (2011)CrossRefGoogle Scholar
  34. 34.
    Koester, S., Evilevitch A, Jeembaeva, M., Weitz, D.A.: Influence of internal capsid pressure on viral infection by phage λ. Biophys. J. 97, 1525–1529 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    De Paepe, M., Taddei, F.: Viruses’ life history: towards a mechanistic basis of a trade-off between survival and reproduction among phages. PLoS Biol. 4, 1248–1256 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringLund UniversityLundSweden
  2. 2.Department of PhysicsCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of BiochemistryLund UniversityLundSweden

Personalised recommendations