Journal of Biological Physics

, Volume 38, Issue 1, pp 75–83 | Cite as

The relation between the structure of the first solvation shell and the IR spectra of aqueous solutions

  • Revati Kumar
  • Tom Keyes
Original Paper


The spectroscopic signatures of solvated anions and cations, in the O-H stretch region of water, are studied using the POLIR potential. Shifts in the spectra are shown to correlate very well with the distribution of a particular hydrogen bond angle for the waters in the first solvation shell. The results indicate that the spectral shifts might be predicted from MD simulations in a computationally convenient fashion, avoiding an explicit calculation of the spectra, as first suggested by Sharp et al. (J Chem Phys 114(4):1791–1796, 2001).


Ions Solvation shell Hydrogen bond angles IR spectra 



We thank the donors of the American Chemical Society Petroleum Research Fund and the National Science Foundation (grant CHE 0848427) for support of this research.


  1. 1.
    Sharp, K.A., Madan, B., Manas, E., Vanderkooi, J.M.: Water structure changes induced by hydrophobic and polar solutes revealed by simulations and infrared spectroscopy. J. Chem. Phys. 114(4), 1791–1796 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Franks, F.E.: Water: a Comprehensive Treatise. Plenum, New York (1972)Google Scholar
  3. 3.
    Stillinger, F.H.: Water revisited. Science 209(4455), 451–457 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    Kumar, R., Schmidt, J.R., Skinner, J.L.: Hydrogen bonding definitions and dynamics in liquid water. J. Chem. Phys. 126(20), 204107 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Senior, W.A., Verrall, R.E.: Spectroscopic evidence for the mixture model in HOD solutions. J. Phys. Chem. 73(12), 4242–4249 (1969)CrossRefGoogle Scholar
  6. 6.
    Hare, D.E., Sorensen, C.M.: Raman spectroscopic study of dilute HOD in liquid H2O in the temperature range – 31.5 to 160°C. J. Chem. Phys. 93(10), 6954–6961 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    Fecko, C.J., Loparo, J.J., Roberts, S.T., Tokmakoff, A.: Local hydrogen bonding dynamics and collective reorganization in water: ultrafast infrared spectroscopy of HOD/D2O. J. Chem. Phys. 122(5), 054506 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Lin, Y.-S., Auer, B.M., Skinner, J.L.: Water structure, dynamics, and vibrational spectroscopy in sodium bromide solutions. J. Chem. Phys. 131(14), 144511 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Bakker, H.J., Skinner, J.L.: Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110(3), 1498–1517 (2010)CrossRefGoogle Scholar
  10. 10.
    Stangret, J., Gampe, T.: Ionic hydration behavior derived from infrared spectra in HDO. J. Phys. Chem. A 106(21), 5393–5402 (2002)CrossRefGoogle Scholar
  11. 11.
    Madan, B., Sharp, K.: Heat capacity changes accompanying hydrophobic and ionic solvation:? A Monte Carlo and random network model study. J. Phys. Chem. 100, 7713–7721 (1996)CrossRefGoogle Scholar
  12. 12.
    Sharp, K., Madan, B.: Hydrophobic effect, water structure, and heat capacity changes. J. Phys. Chem. B 101(18), 4343–4348 (1997)CrossRefGoogle Scholar
  13. 13.
    Madan, B., Sharp, K.: Changes in water structure induced by a hydrophobic solute probed by simulation of the water hydrogen bond angle and radial distribution functions. Biophys. Chem. 78(1–2), 33 (1999)CrossRefGoogle Scholar
  14. 14.
    Mankoo, P.K., Keyes, T.: POLIR: polarizable, flexible, transferable water potential optimized for IR spectroscopy. J. Chem. Phys. 129(3) 034504-1–034504-9 (2008)CrossRefGoogle Scholar
  15. 15.
    Kumar, R., Keyes, T.: Classical simulations with the POLIR potential describe the vibrational spectroscopy and energetics of hydration: divalent cations, from solvation to coordination complex. J. Am. Chem. Soc. 133, 9441 (2011)CrossRefGoogle Scholar
  16. 16.
    Thole, B.T.: Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59(3), 341–350 (1981)ADSCrossRefGoogle Scholar
  17. 17.
    Grossfield, A., Ren, P., Ponder, J.W.: Ion solvation thermodynamics from simulation with a polarizable force field. J. Am. Chem. Soc. 125(50), 15671–15682 (2003)CrossRefGoogle Scholar
  18. 18.
    Ahlborn, H., Space, B., Moore, P.B.: The effect of isotopic substitution and detailed balance on the infrared spectroscopy of water: a combined time correlation function and instantaneous normal mode analysis. J. Chem. Phys. 112(18), 8083–8088 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    Berens, P., Wilson, K.R.: Molecular dynamics and spectra. I. J. Chem. Phys. 74, 4872 (1981)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Revati Kumar
    • 1
  • Tom Keyes
    • 1
  1. 1.Department of ChemistryBoston UniversityBostonUSA

Personalised recommendations