Journal of Biological Physics

, Volume 36, Issue 4, pp 339–354 | Cite as

Frequency-dependent electrodeformation of giant phospholipid vesicles in AC electric field

  • Primož Peterlin
Original Paper


A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed.


Electrodeformation Giant phospholipid vesicle Leaky dielectric Membrane bending energy Vesicle shape 



The author would like to thank Prof. S. Svetina and Prof. B. Žekš for numerous helpful discussions and V. Arrigler for the help with vesicle preparation. This work has been supported by the Slovenian Research Agency through grant J3-2268.


  1. 1.
    Aranda, S., Riske, K.A., Lipowsky, R., Dimova, R.: Morphological transitions of vesicles induced by AC electric fields. Biophys. J. 95, L19–L21 (2008)CrossRefGoogle Scholar
  2. 2.
    Polk, C., Postow, E. (eds.): Handbook of Biological Effects of Electromagnetic Fields, 2nd edn. CRC, Boca Raton (1996)Google Scholar
  3. 3.
    Zimmermann, U., Neil, G.A. (eds.): Electromanipulation of Cells. CRC, Boca Raton (1996)Google Scholar
  4. 4.
    Jones, T.B.: Electromechanics of Particles. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  5. 5.
    Zimmerman, U., Friedrich, U., Mussauer, H., Gessner, P., Hämel, K., Sukhorukov, V.: Electromanipulation of mammalian cells: fundamentals and application. IEEE Trans. Plasma Sci. 28, 72–82 (2000)CrossRefADSGoogle Scholar
  6. 6.
    Gimsa, J.: A comprehensive approach to electro-orientation, electrodeformation, dielectrophoresis, and electrorotation of ellipsoidal particles and biological cells. Bioelectrochemistry 54(1), 23–31 (2001)CrossRefGoogle Scholar
  7. 7.
    Dimova, R., Riske, K.A., Aranda, S., Bezlyepkina, N., Knorr, R.L., Lipowsky, R.: Giant vesicles in electric fields. Soft Matter 3, 817–827 (2007)CrossRefGoogle Scholar
  8. 8.
    Dimova, R., Bezlyepkina, N., Domange Jordö, M., Knorr, R.L., Riske, K.A., Staykova, M., Vlahovska, P.M., Yamamoto, T., Yang, P., Lipowsky, R.: Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter 5, 3201–3212 (2009)CrossRefGoogle Scholar
  9. 9.
    Schwan, H.P.: Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5, 147–209 (1957)Google Scholar
  10. 10.
    Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch., C 28, 693–703 (1973)Google Scholar
  11. 11.
    Helfrich, W.: Deformation of lipid bilayer spheres by electric fields. Z. Naturforsch., C 29, 182–183 (1974)Google Scholar
  12. 12.
    Bryant, G., Wolfe, J.: Electromechanical stresses produced in the plasma membranes of suspended cells by applied electric fields. J. Membr. Biol. 96, 129–139 (1987)CrossRefGoogle Scholar
  13. 13.
    Winterhalter, M., Helfrich, W.: Deformation of spherical vesicles by electric field. J. Colloid Interface Sci. 122, 583–586 (1988)CrossRefGoogle Scholar
  14. 14.
    Harbich, W., Helfrich, W.: Alignment and opening of giant lecithin vesicles by electric fields. Z. Naturforsch., A 34, 1063–1065 (1979)ADSGoogle Scholar
  15. 15.
    Mitov, M.D., Méléard, P., Winterhalter, M., Angelova, M.I., Bothorel, P.: Electric-field-dependent thermal fluctuations of giant vesicles. Phys. Rev. E 48(1), 628–631 (1993)CrossRefADSGoogle Scholar
  16. 16.
    Peterlin, P., Svetina, S., Žekš, B.: The frequency dependence of phospolipid vesicle shapes in an external electic field. Pflügers Arch. Eur. J. Physiol. 439, R139–R140 (2000)CrossRefGoogle Scholar
  17. 17.
    Hyuga, H., Kinosita, Jr., K., Wakabayashi, N.: Transient and steady-state deformations of a vesicle with an insulating membrane in response to step-function or alternating electric fields. Jpn. J. Appl. Phys. 30(10), 2649–2656 (1991)CrossRefADSGoogle Scholar
  18. 18.
    Hyuga, H., Kinosita, Jr., K., Wakabayashi, N.: Steady-state deformation of a vesicle in alternating electric fields. Bioelectrochem. Bioenerg. 32, 15–25 (1993)CrossRefGoogle Scholar
  19. 19.
    Landau, L.D., Lifshitz, E.M., Pitaevskiĭ, L.P.: Electrodynamics of continuous media. In: Course of Theoretical Physics, vol. 8, 2nd edn. Butterworth-Heineman, Oxford (1984)Google Scholar
  20. 20.
    Nörtemann, K., Hilland, J., Kaatze, U.: Dielectric properties of aqueous NaCl solutions at microwave frequencies. J. Phys. Chem., A 101, 6864–6869 (1997)CrossRefGoogle Scholar
  21. 21.
    Turcu, I., Lucaciu, C.M.: Dielectrophoresis: a spherical shell model. J. Phys., A, Math. Gen. 22, 985–993 (1989)CrossRefADSGoogle Scholar
  22. 22.
    Foster, K.R., Sauer, F.A., Schwan, H.P.: Electrorotation and levitation of cells and colloidal particles. Biophys. J. 63(1), 180–190 (1992)CrossRefADSGoogle Scholar
  23. 23.
    Angelova, M.I., Dimitrov, D.S.: Liposome electroformation. Faraday Discuss. Chem. Soc. 81, 303–311 (1986)CrossRefGoogle Scholar
  24. 24.
    Angelova, M.I., Soléau, S., Méléard, P., Faucon, J.F., Bothorel, P.: Preparation of giant vesicles by external AC electric fields. Kinetics and applications. Prog. Colloid & Polym. Sci. 89, 127–131 (1992)CrossRefGoogle Scholar
  25. 25.
    Peterlin, P., Arrigler, V.: Electroformation in a flow chamber with solution exchange as a means of preparation of flaccid giant vesicles. Colloids Surf., B 64, 77–87 (2008)CrossRefGoogle Scholar
  26. 26.
    Sevšek, F., Sukharev, S., Svetina, S., Žekš, B.: The shapes of phospholipid vesicles in electric field as determined by video microscopy. Stud. Biophys. 138, 143–146 (1990)Google Scholar
  27. 27.
    Antonova, K., Vitkova, V., Mitov, M.D.: Deformation of giant vesicles in AC electric fields-Dependence of the prolate-to-oblate transition frequency on vesicle radius. EPL 89, 38004 (2010). doi: 10.1209/0295-5075/89/38004
  28. 28.
    Sukhorukov, V.L., Meedt, G., Kürscher, M., Zimmerman, U.: A single-shell model for biological cells extended to account for the dielectric anisotropy of the plasma membrane. J. Electrost. 50, 191–204 (2001)CrossRefGoogle Scholar
  29. 29.
    Ambjörnsson, T., Mukhopadhyay, G.: Dipolar response of an ellipsoidal particle with an anisotropic coating. J. Phys. A, Math. Gen. 36, 10,651–10,665 (2003)MATHCrossRefADSGoogle Scholar
  30. 30.
    Ko, Y.T.C., Huang, J.P., Yu, K.W.: The dielectric behaviour of single-shell spherical cells with a dielectric anisotropy in the shell. J. Phys., Condens. Matter 16, 499–509 (2004)CrossRefADSGoogle Scholar
  31. 31.
    Simeonova, M., Gimsa, J.: Dielectric anisotropy, volume potential anomalies and the persistent Maxwellian equivalent body. J. Phys., Condens. Matter 17, 7817–7831 (2005)CrossRefADSGoogle Scholar
  32. 32.
    Peterlin, P., Svetina, S., Žekš, B.: The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer. J. Phys., Condens. Matter 19, 136 220 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Vlahovska, P.M., Serral Gracià, R., Aranda-Espinoza, S., Dimova, R.: Electrohydrodynamic model of vesicle deformation in alternating electric field. Biophys. J. 96, 4789–4803 (2009)CrossRefADSGoogle Scholar
  34. 34.
    Kummrow, M., Helfrich, W.: Deformation of giant lipid vesicles by electric fields. Phys. Rev. A 44(12), 8356–8360 (1991)CrossRefADSGoogle Scholar
  35. 35.
    Niggemann, G., Kummrow, M., Helfrich, W.: The bending rigidity of phosphatidylcholine bilayers: dependences on experimental method, sample cell sealing and temperature. J. Phys. II France 5, 413–425 (1995)CrossRefGoogle Scholar
  36. 36.
    Pott, T., Bouvrais, H., Méléard, P.: Giant unilamellar vesicle formation under physiologically relevant conditions. Chem. Phys. Lipids 154, 115–119 (2008)CrossRefGoogle Scholar
  37. 37.
    Horger, K.S., Estes, D.J., Capone, R., Mayer, M.: Films of agarose enable rapid formation of giant liposomes in solutions of physiologic ionic strength. J. Am. Chem. Soc. 131, 1810–1819 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Faculty of Medicine, Institute of BiophysicsUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations