Advertisement

Journal of Biological Physics

, Volume 36, Issue 3, pp 273–289 | Cite as

Electronic pathway in reaction centers from Rhodobacter sphaeroides and Chloroflexus aurantiacus

  • Michal Pudlak
  • Richard Pincak
Original Paper

Abstract

The reaction centers (RC) of Chloroflexus aurantiacus and Rhodobacter sphaeroides H(M182)L mutant were investigated. Prediction for electron transfer (ET) at very low temperatures was also performed. To describe the kinetics of the C. aurantiacus RCs, the incoherent model of electron transfer was used. It was shown that the asymmetry in electronic coupling parameters must be included to explain the experiments. For the description of R. sphaeroides H(M182)L mutant RCs, the coherent and incoherent models of electron transfer were used. These two models are discussed with regard to the observed electron transfer kinetics. It seems likely that the electron transfer asymmetry in R. sphaeroides RCs is caused mainly by the asymmetry in the free energy levels of L- and M-side cofactors. In the case of C. aurantiacus RCs, the unidirectionality of the charge separation can be caused mainly by the difference in the electronic coupling parameters in two branches.

Keywords

Photosynthetic bacterial reaction centers Primary charge separation Electron transfer Asymmetry in electron transfer Quantum yields Photosynthesis Rate constants Charge-separating reactions Solar energy 

Notes

Acknowledgements

The work was supported by the Slovak Academy of Sciences under the CEX NANOFLUID and VEGA grant 2/7056/27.

References

  1. 1.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R., Michel, H.: Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318, 618–624 (1985)CrossRefADSGoogle Scholar
  2. 2.
    Allen, J.P., Willams, J.C.: Photosynthetic reaction centers. FEBS Lett. 438, 5–9 (1998)CrossRefGoogle Scholar
  3. 3.
    Amesz, J.: The heliobacteria, a new group of photosynthetic bacteria. J. Photochem. Photobiol. B Biol. 30, 89–96 (1995)CrossRefGoogle Scholar
  4. 4.
    Sakurai, H., Kusumoto, N., Inoue, K.: Function of the reaction center of green sulfur bacteria. Photochem. Photobiol. 64, 5–13 (1996)CrossRefGoogle Scholar
  5. 5.
    Golbeck, J.H.: Shared thematic elements in photochemical reaction centers. Proc. Natl. Acad. Sci. U.S.A. 90, 1642–1646 (1993)CrossRefADSGoogle Scholar
  6. 6.
    Krauβ, N., Schubert, W.-D., Klukas, O., Fromme, P., Witt, H.T., Saenger, W.: Photosystem I at 4Å resolution represents the first structural model of a joint photosyn \(\neg\)thetic reaction center and core antenna system. Nat. Struct. Biol. 3, 965–973 (1996)CrossRefGoogle Scholar
  7. 7.
    Van Brederode, M.E., Jones, M.R., Van Mourik, F., Van Stokkum, I.H.M., Van Grondelle, R.: A new pathway for transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides not involving the excited special pair. Biochemistry 36, 6855–6861 (1997)CrossRefGoogle Scholar
  8. 8.
    Heller, B.A., Holten, D., Kirmaier, C.: Control of electron transfer between the L- and M-sides of photosynthetic reaction centers. Science 269, 940–945 (1995)CrossRefADSGoogle Scholar
  9. 9.
    Chuang, J.I., Boxer, S.G., Holten, D., Kirmaier, C.: Temperature dependence of electron transfer to the M-side bacteriopheophytin in Rhodobacter capsulatus reaction centers. J. Phys. Chem. B 112, 5487–5499 (2008)CrossRefGoogle Scholar
  10. 10.
    Kirmaier, Ch., Holten, D.: Evidence that a distribution of bacterial reaction centers underlies the temperature and detection-wavelength dependence of the rates of the primary electron-transfer reactions. Proc. Natl. Acad. Sci. U.S.A. 87, 3552–3556 (1990)CrossRefADSGoogle Scholar
  11. 11.
    Takahashi, E., Wraight, C.A.: Proton and electron-transfer in the acceptor quinone complex of Rhodobacter sphaeroides reaction centers – characterization of site-directed mutants of the 2 ionizable residues, GLUL212 and ASPL213, in the QB binding-site. Biochemistry 31, 855–866 (1992)CrossRefGoogle Scholar
  12. 12.
    Shuvalov, V.A., Duysens, L.N.M.: Primary electron transfer reactions in modified reaction centers from Rhodopseudomonas sphaeroides. Proc. Natl. Acad. Sci. U.S.A. 83, 1690–1694 (1986)CrossRefADSGoogle Scholar
  13. 13.
    Gehlen, J.N., Marchi, M., Chandler, D.: Dynamics affecting the primary charge transfer in photosynthesis. Science 263, 499–502 (1994)CrossRefADSGoogle Scholar
  14. 14.
    Müller, M.G., Drews, G., Holzwarth, A.: Primary charge separation processes in reaction centers of an antenna-free mutant of Rhodobacter capsulatus. Chem. Phys. Lett. 258, 194–202 (1996)CrossRefGoogle Scholar
  15. 15.
    Marchi, M., Gehlen, J.N., Chandler, D., Newton, M.: Diabatic surfaces and the pathway for primary electron transfer in a photosynthetic reaction center. J. Am. Chem. Soc. 115, 4178–4190 (1993)CrossRefGoogle Scholar
  16. 16.
    Tanaka, S., Marcus, R.A.: Electron transfer model for the electric field effect on quantum yield of charge separation in bacterial photosynthetic reaction centers. J. Phys. Chem. B 101, 5031–5045 (1997)CrossRefGoogle Scholar
  17. 17.
    Bixon, M., Jortner, J., Michel-Beyerle, M.E.: A kinetic analysis of the primary charge separation in bacterial photosynthesis. Energy gaps and static heterogeneity. Chem. Phys. 197, 389–404 (1995)Google Scholar
  18. 18.
    Müller, M.G., Griebenow, K., Holzwarth, A.R.: Primary processes in isolated photosynthetic bacterial reaction centers from Chloroflexus aurantiacus studied by picosecond fluorescence spectroscopy. Biochim. Biophys. Acta 1098, 1–12 (1991)CrossRefGoogle Scholar
  19. 19.
    Capek, V., Szocs, V.: Is the sink model of exciton trapping in molecular condensates satisfactory? Phys. Status Solidi, B 125, K137–K142 (1984)CrossRefADSGoogle Scholar
  20. 20.
    Sparpaglione, M., Mukamel, S.: Dielectric friction and the transition from adiabatic to nonadiabatic electron transfer. I. Solvation dynamics in Liouville space. J. Chem. Phys. 88, 3263–3280 (1988)CrossRefADSGoogle Scholar
  21. 21.
    Zwanzig, R.: On the identity of three generalized master equations. Physica 30, 1109–1123 (1964)CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Shibata, F., Takashi, Y., Hashitsume, N.: A generalized Stochastic Liouville equation. Non-Markovian versus memoryless master equations. J. Stat. Phys. 17, 171–187 (1977)CrossRefADSGoogle Scholar
  23. 23.
    Pudlak, M.: Primary charge separation in the bacterial reaction center: validity of incoherent sequential model. J. Chem. Phys. 118, 1876–1882 (2003)CrossRefADSGoogle Scholar
  24. 24.
    Marcus, R.A.: An internal consistency test and its implications for the initial steps in bacterial photosynthesis. Chem. Phys. Lett. 146, 13–22 (1988)CrossRefADSGoogle Scholar
  25. 25.
    Jortner, J.: Temperature dependent activation energy for electron transfer between biological molecules. J. Chem. Phys. 64, 4860–4867 (1976)CrossRefADSGoogle Scholar
  26. 26.
    Pudlak, M., Pincak, R.: Modeling charge transfer in the photosynthetic reaction center. Phys. Rev. E 68, 061901–7 (2003)CrossRefADSGoogle Scholar
  27. 27.
    Katilius, E., Turanchik, T., Lin, S., Taguchi, A.K.W., Woodbury, N.W.: B-side electron transfer in a Rhodobacter sphaeroides reaction center mutant in which the B-side monomer bacteriochlorophyll is replaced with bacteriopheophytin. J. Phys. Chem. B 103, 7386–7389 (1999)CrossRefGoogle Scholar
  28. 28.
    Katilius, E., Katiliene, Z., Lin, S., Taguchi, A.K.W., Woodbury, N.W.: B-side electron transfer in a Rhodobacter sphaeroides reaction center mutant in which the B-side monomer bacteriochlorophyll is replaced with bacteriopheophytin: low-temperature study and energetics of charge-separated states. J. Phys. Chem. B 106, 1471–1475 (2002)CrossRefGoogle Scholar
  29. 29.
    Pudlak, M.: Electron transfer driven by conformational variations. J. Chem. Phys. 108, 5621–5625 (1998)CrossRefADSGoogle Scholar
  30. 30.
    Kirmaier, Ch., He, Ch., Holten, D.: Manipulating the direction of electron transfer in the bacterial photosynthetic reaction center by swapping Phe for Tyr near BChlM (L181) and Tyr for Phe near BChlL (M208). Biochemistry 40, 12132–12139 (2001)CrossRefGoogle Scholar
  31. 31.
    Michel-Beyerle, M.E., Plato, M., Deisenhofer, J., Michel, H., Bixon, M., Jortner, J.: Unidirectionality of charge separation in reaction centers of photosynthetic bacteria. Biochim. Biophys. Acta 932, 52–70 (1988)CrossRefGoogle Scholar
  32. 32.
    Pincak, R., Pudlak, M.: Noise breaking the twofold symmetry of photosynthetic reaction centers: electron transfer. Phys. Rev. E 64, 031906–10 (2001)CrossRefADSGoogle Scholar
  33. 33.
    Plato, M., Möbius, K., Michel-Beyerle, M.E., Bixon, M.: Intermolecular electronic interactions in the primary charge separation in bacterial photosynthesis. J. Am. Chem. Soc. 110, 7279–7285 (1988)CrossRefGoogle Scholar
  34. 34.
    Pudlak, M., Pincak, R.: The role of accessory bacteriochlorophylls in the primary charge transfer in the photosynthetic reaction center. Chem. Phys. Lett. 342, 587–592 (2001)CrossRefADSGoogle Scholar
  35. 35.
    Parson, W.W., Chu, Z.T., Warshel, A.: Electrostatic control of charge separation in bacterial photosynthesis. Biochim. Biophys. Acta 1017, 251–272 (1990)CrossRefGoogle Scholar
  36. 36.
    Yamasaki, H., Nakamura, H., Takano, Y.: Theoretical analysis of the electronic asymmetry of the special pair in the photosynthetic reaction center: effect of structural asymmetry and protein environment. Chem. Phys. Lett. 447, 324–329 (2007)CrossRefADSGoogle Scholar
  37. 37.
    Kirmaier, C., Weems, D., Holten, D.: M-side electron transfer in reaction center mutants with a lysine near the non-photoactive bacteriochlorophyll. Biochemistry 38, 11516–11530 (1999)CrossRefGoogle Scholar
  38. 38.
    Haffa, A.L.M., Lin, S., Williams, J.A.C., Bowen, B., Taguchi, A.K.W., Allen, J.P., Woodbury, N.: Controlling the pathway of photosynthetic charge separation in bacterial reaction centers. J. Phys. Chem. B 108, 4–7 (2004)CrossRefGoogle Scholar
  39. 39.
    Parson, W.W., Warshel, A.: A density matrix model of photosynthetic electron transfer with microscopically based estimated vibrational relaxation times. Chem. Phys. 296, 201–216 (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Experimental PhysicsSlovak Academy of SciencesKosiceSlovak Republic
  2. 2.Joint Institute for Nuclear Research, BLTPDubnaRussia

Personalised recommendations