Journal of Biological Physics

, Volume 36, Issue 1, pp 109–120 | Cite as

Information storing by biomagnetites

Original Paper


Since the discovery of the presence of biogenic magnetites in living organisms, there have been speculations on the role that these biomagnetites play in cellular processes. It seems that the formation of biomagnetite crystals is a universal phenomenon and not an exception in living cells. Many experimental facts show that features of organic and inorganic processes could be indistinguishable at nanoscale levels. Living cells are quantum “devices” rather than simple electronic devices utilizing only the charge of conduction electrons. In our opinion, due to their unusual biophysical properties, special biomagnetites must have a biological function in living cells in general and in the brain in particular. In this paper, we advance a hypothesis that while biomagnetites are developed jointly with organic molecules and cellular electromagnetic fields in cells, they can record information about the Earth’s magnetic vector potential of the entire flight in migratory birds.


Biomagnetite formation by biological control Aharonov–Bohm effect 


  1. 1.
    Anderson, H.C.: Mechanism of pathologic calcification. Rheum. Dis. Clin. North Am. 2, 303–319 (1988)Google Scholar
  2. 2.
    Bókkon, I.: The world of nanobacteria. Biokémia, Q. Bull. Hung. Biochem. Soc. 2, 35–42 (2003)Google Scholar
  3. 3.
    Lang, C., Schüler, D., Faivre, D.: Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol. Biosci. 7, 144–151 (2007)CrossRefGoogle Scholar
  4. 4.
    Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (eds.): Magnetite Biomineralization and Magnetoreception in Organisms: A New Biomagnetism. Plenum, New York (1985)Google Scholar
  5. 5.
    Kirschvink, J.L.: South-seeking magnetic bacteria. J. Exp. Biol. 86, 345–347 (1980)Google Scholar
  6. 6.
    John, S., Burstein, E., Weisbuch, C. (eds.): Localization of light in disordered and periodic dielectrics, confined electrons and photons. Plenum, New York (1995)Google Scholar
  7. 7.
    Kirschvink, J.L., Kirschvink, A., Woodford, B.: Magnetite biomineralization in the human brain. PNAS 89, 7683–7687 (1992)CrossRefADSGoogle Scholar
  8. 8.
    Hedges, R.W.: Inheritance of magnetosome polarity in magnetotropic bacteria. J. Theor. Biol. 112, 607–608 (1985)CrossRefGoogle Scholar
  9. 9.
    Nanney, D.L.: Heredity without Genes: Ciliate Explorations of Clonal Heredity, pp. 295–298. Elsevier, Amsterdam (1985)Google Scholar
  10. 10.
    Barnothy, J.M., Barnothy, M.F., Boszormenyi-Nagy, I.: Influence of magnetic field upon the leucocytes of the mouse. Nature 177, 577–578 (1956)CrossRefADSGoogle Scholar
  11. 11.
    Barnothy, J.M., Barnothy, M.F.: Biological effect of a magnetic field and the radiation syndrome. Nature 181, 1785–1786 (1958)CrossRefADSGoogle Scholar
  12. 12.
    Maret, G., Kiepenheuer, J., Boccara, N.: Biophysical Effects of Steady Magnetic Fields. Springer, Berlin (1986)Google Scholar
  13. 13.
    Rocard, Y.: Actions of a very weak magnetic gradient: the reflex of the dowser. In: Barnothy, M.F. (ed.) Biological Effects of Magnetic Fields, pp. 279–286. Plenum, New York (1964)Google Scholar
  14. 14.
    Andra, W., Novak, H.: Magnetism in Medicine. Wiley-VCH, Mannheim (2007)Google Scholar
  15. 15.
    Adair, R.K.: Constraints of thermal noise on the effects of weak 60-Hz magnetic fields acting on biological magnetite. PNAS 91, 2925–2929 (1994)CrossRefADSGoogle Scholar
  16. 16.
    Binhi, V.N.: An analytical survey of theoretical studies in the area of magnetoreception. In: Repacholi, M.H., Rubtsova, N.B., Muc, A.M. (eds.) Electromagnetic Fields: Biological Effects and Hygienic Standardization, pp. 155–170. World Health Organization, Geneva (1999)Google Scholar
  17. 17.
    Bókkon, I.: Creative information. J. Biol. Syst. 11, 1–17 (2003)CrossRefGoogle Scholar
  18. 18.
    Clark, I.J.: The geometric curvature of microtubules may play a part in information processing. Bioelectrochemistry and Bioenergetics 41, 59–61 (1996)CrossRefGoogle Scholar
  19. 19.
    Fukada, E.: Electrical phenomena in biorheology. Biorheology 19, 15–27 (1982)Google Scholar
  20. 20.
    Kobayashi, M., Takeda, M., Ito, K., Kato, H., Inaba, H.: Two-dimensional photon counting imaging and spatiotemporal characterization of ultraweak photon emission from a rat’s brain in vivo. J. Neurosci. Methods 93, 163–168 (1999)CrossRefGoogle Scholar
  21. 21.
    Nuccitelli, R.: Ionic currents and DC fields in multicellular animal tissues. Bioelectromagnetics 1, 147–157 (1992)CrossRefGoogle Scholar
  22. 22.
    Popp, F.A., Ruth, B., Bahr, W., Böhm, J., Grass, P., Grolig, G., Rattemeyer, M., Schmidt, H.G., Wulle, P.: Emission of visible and ultraviolet radiation by active biological systems. Collect. Phenom. 3, 187–214 (1981)Google Scholar
  23. 23.
    Popp, F.A., Yan, Y.: Delayed luminescence of biological systems in terms of coherent states. Phys. Lett. A 293, 93–97 (2002)CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    Grundler, W., Kaiser, F., Keilmann, F., Walleczek, J.: Mechanisms of electromagnetic interaction with cellular systems. Naturwissenschaften 79, 551–559 (1992)CrossRefADSGoogle Scholar
  25. 25.
    Szent-Györgyi, A.: Electronic Biology and Cancer. Dekker, New York (1976)Google Scholar
  26. 26.
    Fink, H.W., Schönenberger, C.: Electrical conduction through DNA molecules. Nature 398, 407–410 (1999)CrossRefADSGoogle Scholar
  27. 27.
    Fukada, E.: Piezoelectricity of biopolymers. Biorheology 32, 593–609 (1995)CrossRefGoogle Scholar
  28. 28.
    Shamos, M.H., Lavine, L.S.: Piezoelectricity as a fundamental property of biological tissues. Nature 213, 267–269 (1967)CrossRefADSGoogle Scholar
  29. 29.
    Szent-Györgyi, A.: The Living State and Cancer. Magvető, Budapest (1983)Google Scholar
  30. 30.
    Bordi, F., Cametti, C., Natali, F.: Electrical conductivity and ion permeation in planar lipid membranes. Bioelectrochemistry and Bioenergetic 41, 197–200 (1996)CrossRefGoogle Scholar
  31. 31.
    Ho, M.W., Haffegee, J., Newton, R., Zhou, Y., Bolton, J.S., Ross, S.: Organisms as polyphasic crystals. Bioelectrochemistry and Bioenergetic 41, 81–91 (1996)CrossRefGoogle Scholar
  32. 32.
    Booth, C.H., Raynes, P.: Liquid-crystal displays. Physics World 10, 33–37 (1997)Google Scholar
  33. 33.
    Fröhlich, H.: Long-range coherence and energy storage in biological systems. Int. J. Quant. Chem. 2, 641–649 (1968)CrossRefGoogle Scholar
  34. 34.
    Vos, M.H., Rappaport, F., Lambry, J.C.H., Breton, J., Martin, J.L.: Visualization of coherent nuclear motion in a membrane protein by femtosecond spectroscopy. Nature 363, 320–325 (1993)CrossRefADSGoogle Scholar
  35. 35.
    Dewey, T.G.: Fractal aspects of protein structure and dynamics. Fractals 1, 179–189 (1993)MATHCrossRefGoogle Scholar
  36. 36.
    Mandelbrot, B.: The Fractal Geometry of Nature. Freeman, San Francisco (1982)MATHGoogle Scholar
  37. 37.
    West, B.J., Goldberger, A.L.: Physiology in fractal dimensions. Am. Sci. 75, 354–365 (1987)ADSGoogle Scholar
  38. 38.
    McClintock, P.V.E.: Unsolved problems of noise. Nature 402, 23–24 (1999)CrossRefADSGoogle Scholar
  39. 39.
    Moss, F.: Noise is good for the brain. Physics World 2, 15–16 (1997)Google Scholar
  40. 40.
    Kirschvink, J.L., Kobayashi-Kirschvink, A., Diaz-Ricci, J.C., Kirschvink, S.J.: Magnetite in human tissues. Bioelectromagnetics 1, 101–113 (1992)CrossRefGoogle Scholar
  41. 41.
    Koenig, R.: Teleportation guru stakes out new ground. Science 288, 1327 (2000)CrossRefGoogle Scholar
  42. 42.
    Hahneiser, S., Kohlsmann, M., Hetscher, M., Kramer, K.D.: Development and application of a SQUID sensor array for the measurement of biomagnetic fields. Bioelectrochemistry and Bioenergetics 37, 51–53 (1995)CrossRefGoogle Scholar
  43. 43.
    Ge, N.-H., Wong, C.M., Lingle, R.L., McNeill, J.D., Gaffney, K.J., Harris, C.B.: Femtosecond dynamics of electron localization at interfaces. Science 279, 202–205 (1998)CrossRefADSGoogle Scholar
  44. 44.
    Pilla, A.A., Nasser, P.R., Kaufmann, J.J.: On the sensitivity of cells and tissues to therapeutic and environmental electromagnetic fields. Bioelectrochemistry and Bioenergetics 30, 161–169 (1993)CrossRefGoogle Scholar
  45. 45.
    Berton, R., Beruto, D., Bianco, B., Chiabrera, A., Giordani, M.: Effect of ELF electromagnetic exposure on precipitation of barium oxalate. Bioelectrochemistry and Bioenergetics 30, 13–25 (1993)CrossRefGoogle Scholar
  46. 46.
    Bajpai, R.P.: Quantum coherence of biophotons and living systems. Indian J. Exp. Biol. 41, 514–527 (2003)Google Scholar
  47. 47.
    Bendjaballah, C.H.: Introduction to Photon Communication. Springer, New York (1995)MATHGoogle Scholar
  48. 48.
    Kobayashi, M., Takeda, M., Sato, T., Yamazaki, Y., Kaneko, K., Ito, K., Kato, H., Inaba, H.: In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress. Neurosci. Res. 34, 103–113 (1999)CrossRefGoogle Scholar
  49. 49.
    Popp, F.A.: Properties of biophotons and their theoretical implications. Indian J. Exp. Biol. 41, 391–402 (2003)Google Scholar
  50. 50.
    Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G., Turbefield, A.: Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000)CrossRefADSGoogle Scholar
  51. 51.
    Liebl, U., Lipowski, G., Négrerie, M., Lambry, J.C., Martin, J.L., Vos, M.H.: Coherent reaction dynamics in a bacteria cytochrome c oxidase. Nature 401, 181–184 (1999)CrossRefADSGoogle Scholar
  52. 52.
    Kirschvink, J.L.: Magnetite biomineralization and geomagnetic sensitivity in higher animals: an update and recommendation for future study. Bioelectromagnetics 10, 239–260 (1989)CrossRefGoogle Scholar
  53. 53.
    Mann, S., Frankel, R.B., Blakemore, R.P.: Structure, morphology and crystal growth of bacterial magnetite. Nature 310, 405–407 (1984)CrossRefADSGoogle Scholar
  54. 54.
    Imry, Y., Webb, R.A.: Quantum interference and the Aharonov–Bohm effect. Scientific American 260, 36–42 (1989)CrossRefGoogle Scholar
  55. 55.
    Manyala, N., Sidis, Y., DiTusa, J.F., Aeppli, G., Young, D.P., Fisk, Z.: Magnetoresistance from quantum interference effects in ferromagnets. Nature 406, 581–584 (2000)ADSGoogle Scholar
  56. 56.
    Tsukagoshi, K., Alphenaar, B.W., Ago, H.: Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (2000)ADSGoogle Scholar
  57. 57.
    Stamm, C., Marty, M., Vaterlaus, A., Weich, V., Egger, S., Maier, U., Ramsperger, U., Fuhrmann, H., Pescia, D.: Two-dimensional magnetic particles. Science 282, 449–451 (1998)CrossRefADSGoogle Scholar
  58. 58.
    Wernsdorfer, W., Sessoli, R.: Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999)CrossRefADSGoogle Scholar
  59. 59.
    Fröhlich, H. (eds.): Biological coherence and response to external stimuli. Springer, Berlin (1988)Google Scholar
  60. 60.
    Fröhlich, H., Kremer, F. (eds.): Coherent excitations in biological systems. Springer, Berlin (1983)Google Scholar
  61. 61.
    Shapiro, M.: Plasticity, hippocampal place cells, and cognitive maps. Arch. Neurol. 58, 874–881 (2001)CrossRefGoogle Scholar
  62. 62.
    Dobson, J.: Investigation of age-related variations in biogenic magnetite levels in the human hippocampus. Exp. Brain Res. 144, 122–126 (2002)CrossRefGoogle Scholar
  63. 63.
    Dunn, J.R., Fuller, M., Zoeger, J., Dobson, J., Heller, F., Hammann, J., Caine, E., Moskowitz, B.M.: Magnetic material in the human hippocampus. Brain Res. Bull. 36, 149–153 (1995)CrossRefGoogle Scholar
  64. 64.
    Save, E., Cressant, A., Thinus-Blanc, C., Poucet, B.: Spatial firing of hippocampal place cells in blind rats. J. Neurosci. 18, 1818–1826 (1998)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Doctoral School of Pharmaceutical and Pharmacological SciencesSemmelweis UniversityBudapestHungary
  2. 2.Department of PhysicsShahid Bahonar University of KermanKermanIran
  3. 3.Afzal Research InstituteKermanIran
  4. 4.Kerman Neuroscience Research CenterKermanIran
  5. 5.Neurosignaling unit, Department of Organismic BiologyUniversity of SalzburgSalzburgAustria

Personalised recommendations