Complexation of Biologically Active Aromatic Compounds with DNA in the Presence of Theophylline

  • A. A. Hernandez Santiago
  • D. D. Andrejuk
  • A. M. Cervantes Tavera
  • D. B. Davies
  • M. P. Evstigneev
Original Paper


1H NMR measurements (500 MHz) have been used to determine the equilibrium hetero-association constants of theophylline (THP) with various biologically active aromatic compounds (daunomycin, novantrone, ethidium bromide, proflavine, norfloxacin) and the complexation constants of THP with both single- and double-stranded oligonucleotides in solution. The results provide a quantitative estimation of the effect of THP on the binding of aromatic ligands with DNA, and a determination of the fraction of aromatic ligand removed from DNA on addition of THP.


Theophylline Caffeine Competitive binding Hetero-association Interceptor mechanism Protector mechanism 


  1. 1.
    Lelo, A., Miners, J.O., Robson, R., Birkett, D.: Assessment of caffeine exposure: caffeine content of beverages, caffeine intake and plasma concentration of methylxanthines. Clin. Pharmacol. Ther. 39, 54–59 (1986)Google Scholar
  2. 2.
    Baron, J.J., Roberts, H.: Caffeine. Springer, Berlin (1981)Google Scholar
  3. 3.
    Dews, P., Grice, H.C., Neims, A., Wilson, J., Wurtman, R.: Report of fourth international caffeine workshop. Food Chem. Toxicol. 22, 163–169 (1984). doi: 10.1016/0278-6915(84)90098-X CrossRefGoogle Scholar
  4. 4.
    D’Ambrosio, S.M.: Evaluation of the genotoxicity data on caffeine. Regul. Toxicol. Pharmacol. 19, 243–281 (1994). doi: 10.1006/rtph.1994.1023 CrossRefGoogle Scholar
  5. 5.
    Sawynok, J.: Pharmacological rationale for the clinical use of caffeine. Drugs 49, 37–50 (1995)CrossRefGoogle Scholar
  6. 6.
    Traganos, F., Kapuscinski, J., Darzynkiewicz, Z.: Caffeine modulates the effects of DNA-intercalating drugs in vitro: a flow cytometric and spectrophotometric analysis of caffeine interaction with novatrone, doxorubicin, ellipticine, and the doxorubicin analague AD198. Cancer Res. 51, 3682–3689 (1991)Google Scholar
  7. 7.
    Piosik, J., Zdunek, M., Kapuscinski, J.: The modulation by xanthines of the DNA-damaging effect of polycyclic aromatic agents. Part II. The stacking complexes of caffeine with doxorubicin and mitoxantrone. Biochem. Pharmacol. 63, 635–646 (2002). doi: 10.1016/S0006-2952(01)00903-0 CrossRefGoogle Scholar
  8. 8.
    Piosik, J., Ulanowska, K., Gwizdek-Wisniewska, A., Czyz, A., Kapuscinski, J., Wegrzyn, G.: Alleviation of mutagenic effects of polycyclic aromatic agents (quinacrine mustard, ICR-191 and ICR-170) by caffeine and pentoxifylline. Mutat. Res. 530, 47–57 (2003). doi: 10.1016/S0027-5107(03)00136-2 Google Scholar
  9. 9.
    Ulanowska, K., Piosik, J., Gwizdek-Wisniewska, A., Wegrzyn, G.: Formation of stacking complexes between caffeine (1,2,3-trimethylxanthine) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine may attenuate biological effects of this neurotoxin. Bioorg. Chem. 33, 402–413 (2005). doi: 10.1016/j.bioorg.2005.07.004 CrossRefGoogle Scholar
  10. 10.
    Davies, D.B., Veselkov, D.A., Djimant, L.N., Veselkov, A.N.: Hetero-association of caffeine and aromatic drugs and their competitive binding with a DNA oligomer. Eur. Biophys. J. 30, 354–366 (2001). doi: 10.1007/s002490100150 CrossRefGoogle Scholar
  11. 11.
    Evstigneev, M.P., Khomich, V.V., Davies, D.B.: Complexation of anthracycline drugs with DNA in the presence of caffeine. Eur. Biophys. J. 36, 1–11 (2006). doi: 10.1007/s00249-006-0071-9 CrossRefGoogle Scholar
  12. 12.
    Evstigneev, M.P., Lantushenko, A.O., Evstigneev, V.P., Mykhina, Y.V., Davies, D.B.: Quantitation of the molecular mechanisms of biological synergism in a mixture of DNA-acting aromatic drugs. Biophys. Chem. 132, 148–158 (2008). doi: 10.1016/j.bpc.2007.11.001 CrossRefGoogle Scholar
  13. 13.
    Larsen, R.W., Jasuja, R., Hetzler, R., Muraoka, P.T., Andrada, V.G., Jameson, D.M.: Spectroscopic and molecular modelling studies of caffeine complexes with DNA intercalators. Biophys. J. 70, 443–452 (1996)CrossRefGoogle Scholar
  14. 14.
    Lyles, M.B., Cameron, I.L., Rawls, H.R.: Structural basis for the binding affinity of xanthines with the DNA intercalator acridine orange. J. Med. Chem. 44, 4650–4660 (2001). doi: 10.1021/jm9904708 CrossRefGoogle Scholar
  15. 15.
    Davies, D.B., Veselkov, D.A., Evstigneev, M.P., Veselkov, A.N.: Self-association of the antitumour agent novatrone (mitoxantrone) and its hetero-association with caffeine. J. Chem. Soc. Perkin Trans. 2, 61–67 (2001). doi: 10.1039/b007042o Google Scholar
  16. 16.
    Veselkov, A.N., Evstigneev, M.P., Rozvadovska, A.O., Mykhina, Y.V., Davies, D.B.: A structural and thermodynamic analysis of novatrone and flavin mononucleotide heteroassociation in aqueous solution by 1H NMR spectroscopy. Russ. J. Bioorg. Chem. 31, 453–459 (2005). doi: 10.1007/s11171-005-0062-0 CrossRefGoogle Scholar
  17. 17.
    Evstigneev, M.P., Rybakova, K.A., Davies, D.B.: Complexation of norfloxacin with DNA in the presence of caffeine. Biophys. Chem. 121, 84–95 (2006). doi: 10.1016/j.bpc.2005.12.003 CrossRefGoogle Scholar
  18. 18.
    Nakano, N.I., Igarashi, S.J.: Molecular interactions of pyrimidines, purines, and some other heteroaromatic compounds in aqueous media. Biochemistry 9, 577–583 (1970). doi: 10.1021/bi00805a019 CrossRefGoogle Scholar
  19. 19.
    Aradi, F., Foldesi, A.: Equilibrium constants for association of caffeine and theophylline with aromatic salts in aqueous solutions studied by 1H NMR chemical shift measurements. Magn. Reson. Chem. 23, 375–378 (1985). doi: 10.1002/mrc.1260230518 CrossRefGoogle Scholar
  20. 20.
    Aradi, F., Foldesi, A.: Hetero-association of caffeine and theophylline with purine and pyrimidine in aqueous solutions studied by 1H NMR chemical shift measurements. Magn. Reson. Chem. 27, 249–252 (1989). doi: 10.1002/mrc.1260270311 CrossRefGoogle Scholar
  21. 21.
    Aradi, F., Foldesi, A.: Effect of methylation on the association ability of purine and pyrimidine in aqueous solutions. A 1H NMR chemical shift study. Magn. Reson. Chem. 27, 592–598 (1989). doi: 10.1002/mrc.1260270613 CrossRefGoogle Scholar
  22. 22.
    Goodman, A.G., Rall, T.W., Nies, A.S.: The pharmacological basis of therapeutics, pp. 618–637. Pergamon, NY (1990)Google Scholar
  23. 23.
    Wijnands, W.J.A., Vree, T.B.: The clinical importance of the interaction between (fluoro)quinolones and the methylxanthines theophylline and caffeine. J. Drug Ther. Res. 16, 15–17 (1991)Google Scholar
  24. 24.
    Johnson, I.M., Bhuvan Kumar, S.G., Malathi, R.: De-intercalation of ethidium bromide and acridine orange by xanthine derivatives and their modulatory effect on anticancer agents. J. Biomol. Struct. Dyn. 20, 677–685 (2003)Google Scholar
  25. 25.
    Veselkov, A.N., Evstigneev, M.P., Veselkov, D.A., Davies, D.B.: A generalized NMR-derived statistical-thermodynamical model of hetero-association of aromatic molecules in aqueous solution. J. Chem. Phys. 115, 2252–2266 (2001). doi: 10.1063/1.1359767 CrossRefADSGoogle Scholar
  26. 26.
    Davies, D.B., Djimant, L.N., Veselkov, A.N.: 1H NMR investigation of self-association of aromatic drug molecules in aqueous solution. Structural and thermodynamical analysis. J. Chem. Soc., Faraday Trans. 92, 383–390 (1996). doi: 10.1039/ft9969200383 CrossRefGoogle Scholar
  27. 27.
    Thakkar, A.L., Tensmeyer, L.G., Wilham, W.L.: NMR evidence for self-association of theophylline in aqueous solution. J. Pharm. Sci. 60, 1267–1268 (1971). doi: 10.1002/jps.2600600841 CrossRefGoogle Scholar
  28. 28.
    Davies, D.B., Eaton, R.J., Baranovsky, S.F., Veselkov, A.N.: NMR investigation of the complexation of daunomycin with deoxytetranucleotides of different base sequence in aqueous solution. J. Biomol. Struct. Dyn. 17, 887–901 (2000)Google Scholar
  29. 29.
    Johnson, I.M., Bhuvan Kumar, S.G., Malathi, R.: RNA binding efficacy of theophylline, theobromine and caffeine. J. Biomol. Struct. Dyn. 20, 687–692 (2003)Google Scholar
  30. 30.
    Zimmermann, G.R., Jenison, R.D., Wick, C.L., Simorre, J.-P., Pardi, A.: Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat. Struct. Biol. 4, 644–649 (1997). doi: 10.1038/nsb0897-644 CrossRefGoogle Scholar
  31. 31.
    Lyles, M.B., Cameron, I.L.: Caffeine and other xanthines as cytochemical blockers and removers of heterocyclic DNA intercalators from chromatin. Cell Biol. Int. 26, 145–154 (2002). doi: 10.1006/cbir.2001.0810 CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • A. A. Hernandez Santiago
    • 1
  • D. D. Andrejuk
    • 2
  • A. M. Cervantes Tavera
    • 1
  • D. B. Davies
    • 3
  • M. P. Evstigneev
    • 2
  1. 1.Faculty of Chemical SciencesAutonomous University of PueblaPueblaMexico
  2. 2.Department of PhysicsSevastopol National Technical UniversitySevastopolUkraine
  3. 3.School of Biological and Chemical SciencesBirkbeck College, University of LondonLondonUK

Personalised recommendations