Journal of Biological Physics

, Volume 34, Issue 3–4, pp 405–412 | Cite as

Nonlinear Dynamical Analysis of the Interdependence Between Central and Autonomic Nervous Systems in Neonates During Sleep

  • E. Pereda
  • J. J. González
Original Paper


We present in this paper the results of a study of the interdependence between signal characteristic of the central nervous system (electroencephalography) and the autonomic nervous system (heart rate and respiration) in human neonates during sleep. By using methods from nonlinear dynamical systems theory, we show that there exist significant differences in this interdependence with the sleep stage and the electrodes considered. This paves the way for the application of this methodology in clinical practice to study pathologies where this interdependence is altered, such as the sudden infant death syndrome.


Nonlinear interdependence analysis Generalized synchronization Sudden infant death syndrome Sleep Neonates 



The data used in this research were provided by the CHIME group funded by NICHD grant # 2U10HD2906709A1. The authors acknowledge the financial support of the grants FIS 05/2166 (I. S. Carlos III), HU2005-0008 of the MEC and PI 042005/005 of the Canary Government.


  1. 1.
    Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)CrossRefADSGoogle Scholar
  2. 2.
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S. (eds.) Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Warwick (1980)Google Scholar
  3. 3.
    Pereda, E., Quian Quiroga, R., Bhattacharya, J.: Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77, 1–37 (2005)CrossRefGoogle Scholar
  4. 4.
    Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiol. 116, 2266–2301 (2005)CrossRefGoogle Scholar
  5. 5.
    Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  6. 6.
    Afraimovich, V.S., Verichev, N.N., Rabinovich, M.I.: General synchronization. Izv. Vyssh. Uch. Zav. Radiofizika. 29, 795–803 (1986)ADSMathSciNetGoogle Scholar
  7. 7.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996)CrossRefADSGoogle Scholar
  9. 9.
    González, J.J., Pereda, E.: Applications of fractal and non-linear time series analysis to the study of short-term cardiovascular control. Curr. Vasc. Pharmacol. 2, 149–162 (2004)CrossRefGoogle Scholar
  10. 10.
    Pereda, E., Rial, R., Gamundi, A., González, J.: Assessment of changing interdependencies between human electroencephalograms using nonlinear methods. Physica D. 148, 147–158 (2001)MATHCrossRefADSGoogle Scholar
  11. 11.
    De la Cruz, D.M., Mañas, S., Pereda, E., Garrido, J.M., Lopez, S., De Vera, L., González, J.J.: Maturational changes in the interdependencies between cortical brain areas of neonates during sleep. Cereb. Cortex 17, 583–590 (2007)CrossRefGoogle Scholar
  12. 12.
    Pereda, E., Mañas, S., De Vera, L., Garrido, J.M., Lopez, S., González, J.: Non-linear asymmetric interdependencies in the electroencephalogram of healthy term neonates during sleep. Neurosci. Lett. 337, 101–105 (2003)CrossRefGoogle Scholar
  13. 13.
    Dumont, M., Jurysta, F., Lanquart, J.P., Migeotte, P.F., Van De Borne, P., Linkowski, P.: Interdependency between heart rate variability and sleep EEG: Linear/non-linear? Clin. Neurophysiol. 115, 2031–2040 (2004)CrossRefGoogle Scholar
  14. 14.
    Dumont, M., Jurysta, F., Lanquart, J.P., Noseda, A., Van De Borne, P., Linkowski, P.: Scale-free dynamics of the synchronization between sleep EEG power bands and the high frequency component of heart rate variability in normal men and patients with sleep apnea-hypopnea syndrome. Clin. Neurophysiol. 118, 2752–2764 (2007)CrossRefGoogle Scholar
  15. 15.
    Jurysta, F., Lanquart, J., Van De Borne, P., Dumont, M., Linkowski, P.: Apneas-hypopneas alter the link between cardiac autonomic activity and sleep delta power in men. J. Sleep Res. 15, 106–106 (2006)CrossRefGoogle Scholar
  16. 16.
    Jurysta, F., Lanquart, J.P., Van De Borne, P., Migeotte, P.F., Dumont, M., Degaute, J.P., Linkowski, P.: The link between cardiac autonomic activity and sleep delta power is altered in men with sleep apnea–hypopnea syndrome. Am. J. Physiol. 291, R1165–R1171 (2006)Google Scholar
  17. 17.
    Yang, C., Lai, C., Lai, H., Kuo, T.: Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in humans. Neurosci. Lett. 329, 213–216 (2002)CrossRefGoogle Scholar
  18. 18.
    Yang, C., Shaw, F., Lai, C., Lai, C., Ku, T.: Relationship between electroencephalogram slow-wave magnitude and heart rate variability during sleep in rats. Neurosci. Lett. 336, 21–24 (2003)CrossRefGoogle Scholar
  19. 19.
    Musizza, B., Stefanovska, A., McClintock, P.V.E., Palus, M., Petrovcic, J., Ribaric, S., Bajrovic, F.F.: Interactions between cardiac, respiratory and EEG-delta oscillations in rats during anaesthesia. J. Physiol. (Lond). 580, 315–326 (2007)CrossRefGoogle Scholar
  20. 20.
    Hunt, C.E., Hauck, F.R.: Sudden infant death syndrome. CMAJ 174, 1861–1869 (2006)Google Scholar
  21. 21.
    Guntheroth, W.G., Spiers, P.S.: The triple risk hypotheses in sudden infant death syndrome. Pediatrics 110(5), e64 (2002)CrossRefGoogle Scholar
  22. 22.
    Weese-Mayer, D.E.: Sudden infant death syndrome: Is serotonin the key factor? JAMA 296, 2143–2144 (2006)CrossRefGoogle Scholar
  23. 23.
    Anders, T., Emde, R., Parmelee, A.: A manual of standardized terminology, techniques and criteria for scoring of states of sleep and wakefulness in newborn infant. UCLA Brain Information Service/BRI. Publications Office, Los Angeles (1971)Google Scholar
  24. 24.
    Abarbanel, H.D.I.: Analysis of observed chaotic data. Springer, New York (1996)MATHGoogle Scholar
  25. 25.
    Hegger, R., Kantz, H.: Improved false nearest neighbor method to detect determinism in time series data. Phys. Rev. E 60, 4970–4973 (1999)CrossRefADSGoogle Scholar
  26. 26.
    Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9, 413–435 (1999). Software publicly available at MATHCrossRefADSGoogle Scholar
  27. 27.
    Quian Quiroga, R., Kraskov, A., Kreuz, T., Grassberger, P.: Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys. Rev. E 65, 041903 (2002)CrossRefADSGoogle Scholar
  28. 28.
    Prichard, D., Theiler, J.: Generating surrogate data for time series with several simultaneously measured variables. Phys. Rev. Lett. 73, 951–954 (1994)CrossRefADSGoogle Scholar
  29. 29.
    Andrzejak, R.G., Kraskov, A., Stogbauer, H., Mormann, F., Kreuz, T.: Bivariate surrogate techniques: necessity, strengths, and caveats. Phys. Rev. E. 68, 066202 (2003)CrossRefADSMathSciNetGoogle Scholar
  30. 30.
    Steriade, M., McCarley, R.W.: Brain control of wakefulness and sleep. Springer, New York (2005)Google Scholar
  31. 31.
    Rosenblum, M.G., Cimponeriu, L., Bezerianos, A., Patzak, A., Mrowka, R.: Identification of coupling direction: application to cardiorespiratory interaction. Phys. Rev. E. 65, 041909 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  1. 1.Electrical Engineering and Bioengineering group, Department of Basic PhysicsUniversity of La LagunaTenerifeSpain
  2. 2.Institute of Biomedical Engineering (ITB)University of La LagunaTenerifeSpain
  3. 3.Laboratory of Biophysics, Department of PhysiologyUniversity of La LagunaTenerifeSpain
  4. 4.Department of Basic PhysicsUniversity of La LagunaTenerifeSpain

Personalised recommendations