On the Protein Crystal Formation as an Interface-Controlled Process with Prototype Ion-Channeling Effect

  • Jacek Siódmiak
  • Jan J. Uher
  • Ivan Santamaría-Holek
  • Natalia Kruszewska
  • Adam Gadomski
Original Paper


A superdiffusive random-walk action in the depletion zone around a growing protein crystal is considered. It stands for a dynamic boundary condition of the growth process and competes steadily with a quasistatic, curvature-involving (thermodynamic) free boundary condition, both of them contributing to interpret the (mainly late-stage) growth process in terms of a prototype ion-channeling effect. An overall diffusion function contains quantitative signatures of both boundary conditions mentioned and indicates whether the new phase grows as an orderly phase or a converse scenario occurs. This situation can be treated in a quite versatile way both numerically and analytically, within a generalized Smoluchowski framework. This study can help in (1) elucidating some dynamic puzzles of a complex crystal formation vs biomolecular aggregation, also those concerning ion-channel formation, and (2) seeing how ion-channel-type dynamics of non-Markovian nature may set properly the pace of model (dis)ordered protein aggregation.


Protein solution Protein crystal Electrostatic double layer Ion channel Enhanced diffusion 


  1. 1.
    Ducruix, A., Giege, R.: Crystallization of Nucleic Acids and Proteins, a Practical Approach. Oxford University Press, New York (1992)Google Scholar
  2. 2.
    McPherson, A.: Crystallization of Biological Macromolecules. Cold Spring Harbor Laboratory Press, New York (1999)Google Scholar
  3. 3.
    Miyazawa, S., Jernigan, R.L.: Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534–552 (1985)CrossRefADSGoogle Scholar
  4. 4.
    Nicolis, G., Basios, V., Nicolis, C.: Pattern formation and fluctuation-induced transitions in protein crystallization. J. Chem. Phys. 120, 7708–7719 (2004)CrossRefADSGoogle Scholar
  5. 5.
    Vekilov, P.G., Lin, H., Rosenberger, F.: Unsteady crystal growth due to step-bunch cascading. Phys. Rev. E 55, 3202–3214 (1997)CrossRefADSGoogle Scholar
  6. 6.
    Hołyst, R.: Some features of soft matter systems. Soft Matter 1, 329–333 (2005)CrossRefGoogle Scholar
  7. 7.
    Gadomski, A., Siódmiak, J.: Kinetics of protein crystal growth in mass convection regime. Cryst. Res. Technol. 37, 281–291 (2002)CrossRefGoogle Scholar
  8. 8.
    Łuczka, J., Niemiec, M., Rudnicki, R.: Kinetics of growth process controlled by convective fluctuations. Phys. Rev. E 65, 051401.1–9 (2002)ADSGoogle Scholar
  9. 9.
    Siwy, Z., Fuliński, A.: Origin of 1/f α noise in membrane channel currents. Phys. Rev. Lett. 89, 158101.1–4 (2002)ADSGoogle Scholar
  10. 10.
    Bezrukov, S.M., Winterhalter, M.: Examining noise sources at the single-molecule level: 1/f noise of an open Maltoporin channel. Phys. Rev. Lett. 85, 202–205 (2000)CrossRefADSGoogle Scholar
  11. 11.
    Fuliński, A., Grzywna, Z., Mellor, I., Siwy, Z., Usherwood, P.N.R.: Non-Markovian character of ionic current fluctuations in membrane channels. Phys. Rev. E 58, 919–924 (1998)CrossRefADSGoogle Scholar
  12. 12.
    Siódmiak, J., Gadomski, A.: Computer model of biopolymer crystal growth and aggregation by addition of macromolecular units—a comparative study. Int. J. Mod. Phys. C 17, 1037–1054 (2006)CrossRefADSMATHGoogle Scholar
  13. 13.
    Gadomski, A., Siódmiak, J.: On the elastic contribution to crystal growth in complex environments. Phys. Status Solidi B 242, 538–549 (2005)CrossRefADSGoogle Scholar
  14. 14.
    Chernov, A.A.: Crystal growth science between the centuries. J. Mater. Sci. Mater. Electron. 12, 437–449 (2001)CrossRefGoogle Scholar
  15. 15.
    Gadomski, A., Grzywna, Z., Łuczka, J.: An evolution equation applied to the perturbed sphere growth. Chem. Eng. Sci. 48, 3713–3721 (1993)CrossRefGoogle Scholar
  16. 16.
    Cabrera, N., Levine, M.M.: On the dislocation theory of evaporation of crystals. Philos. Mag. 1, 450–458 (1956)CrossRefADSMATHGoogle Scholar
  17. 17.
    Gadomski, A., Łuczka, J.: Some remarks concerning spherulitic growth. Int. J. Quant. Chem. 52, 301–308 (1994)CrossRefGoogle Scholar
  18. 18.
    Tolman, R.C.: The effect of droplet size on surface tension. J. Chem. Phys. 17, 333–337 (1949)CrossRefADSGoogle Scholar
  19. 19.
    Gadomski, A., Łuczka, J.: Convection-driven growth in fluctuating velocity field. Acta Phys. Pol. B 24, 725–731 (1993)Google Scholar
  20. 20.
    Kurzynski, M.: The Thermodynamic Machinery of Life. Frontiers Collection. Springer, Berlin (2006)Google Scholar
  21. 21.
    Reguera, D., Rubí, J.M.: Nonequilibrium translational-rotational effects in nucleation. J. Chem. Phys. 115, 7100–7106 (2001)CrossRefADSGoogle Scholar
  22. 22.
    Gadomski, A., Rubí, J.M.: On the two principal curvatures as potential barriers in a model of complex matter agglomeration. Chem. Phys. 293, 169–177 (2003)CrossRefGoogle Scholar
  23. 23.
    Chernov, A.A.: Modern Crystallography III: Crystal Growth. Springer, Berlin (1984)Google Scholar
  24. 24.
    Chernov, A.A.: Crystals built of biological macromolecules. Phys. Rep. 288, 61–75 (1997)CrossRefADSGoogle Scholar
  25. 25.
    Pimpinelli, D.K., Villain, J.: Physics of Crystal Growth. Cambridge University Press, New York (1998)Google Scholar
  26. 26.
    Vainstein, M.H., Costa, I.V.L., Morgado, R., Oliveira, F.A.: Non-exponential relaxation for anomalous diffusion. Europhys. Lett. 73, 726–732 (2006)CrossRefADSGoogle Scholar
  27. 27.
    Gadomski, A., Łuczka, J.: Kinetics of temperature or pressure field induced phase transformation in lipid bilayers. Acta Phys. Pol. B 28, 1827–1842 (1997)Google Scholar
  28. 28.
    Málaga, C., Mandujano, F., Santamaría-Holek, I.: Mesoscopic constitutive relations for dilute polymer solutions. Physica A 369, 291–300 (2006)CrossRefADSGoogle Scholar
  29. 29.
    Kosińska, I.D., Fuliński, A.: Asymmetries and anomalous phenomena in ionic transport through nanochannels. Acta Phys. Pol. B 38, 1631–1645 (2007)ADSGoogle Scholar
  30. 30.
    Liu, X.Y., Boek, E.S., Briels, W.J., Bennema, P.: Prediction of crystal growth morphology based on structural analysis of the solid-fluid interface. Nature 374, 342–345 (1995)CrossRefADSGoogle Scholar
  31. 31.
    Heinemann, S.H., Sigworth, F.J.: Open channel noise V. Fluctuating barriers to ion entry in gramicidin A channels. Biophys. J. 57, 499–514 (1990)CrossRefGoogle Scholar
  32. 32.
    Jia, Y.W., Liu. X.Y.: Self-assembly of protein at aqueous solution surface in correlation to protein crystallization. Appl. Phys. Lett. 86, 023903–024100 (2005)CrossRefADSGoogle Scholar
  33. 33.
    Jia, Y.W., Liu. X.Y.: From surface self-assembly to crystallization: prediction of protein crystallization conditions. J. Phys. Chem. B 110, 6949–6955 (2006)CrossRefGoogle Scholar
  34. 34.
    Santamaría-Holek, I., Rubí, J.M., Gadomski, A.: Thermokinetic approach of single particles and clusters involving anomalous diffusion under viscoelastic response. J. Phys. Chem. B 111, 2293–2298 (2007)CrossRefGoogle Scholar
  35. 35.
    Sakmann, B., Neher, E.: Patch clamp techniques for studying ionic channels in excitable membranes. Annu. Rev. Physiol. 46, 455–472 (1984)CrossRefGoogle Scholar
  36. 36.
    Karle, J.: Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology. Int. J. Quant. Chem. 7, 357–367 (1980)Google Scholar
  37. 37.
    Li, H., Perozzo, M.A., Konnert, J.H., Nadarajah, A., Pusey, M.L.: Determining the molecular-packing arrangements on protein crystal faces by atomic force microscopy. Acta Crystallogr. D 55, 1023–1035 (1999)CrossRefGoogle Scholar
  38. 38.
    Kruszewska, N., Gadomski, A.: Towards a 2D model biopolymer polycrystalline aggregation based on Smoluchowski dynamics supplemented by computer experiment. Acta Phys. Pol. B 38, 1819–1835 (2007)ADSGoogle Scholar
  39. 39.
    Stauffer, D., Aharony, A.: Introduction to Percolation Theory. Taylor and Francis, London (1994)Google Scholar
  40. 40.
    Siwy, Z., Apel, P., Baur, D., Dobrev, D.D., Korchev, Y.E., Neumann, R., Spohr, R., Trautmann, C., Voss, K.: Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf. Sci. 532–535, 1061–1066 (2003)CrossRefGoogle Scholar
  41. 41.
    Pechkova, E., Nicolini, C.: Accelerated protein crystal growth by protein thin film template. J. Cryst. Growth 231, 599–602 (2001)CrossRefADSGoogle Scholar
  42. 42.
    Buff, F.P.: The spherical interface. I. Thermodynamics. J. Chem. Phys. 19, 1591–1594 (1951)CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Babin, V., Holyst, R.: Evaporation of a sub-micrometer droplet. J. Phys. Chem. B 109 11367–11372 (2005)CrossRefGoogle Scholar
  44. 44.
    Gadomski, A.: Diffusion-reaction approach applied to the ionic wave propagation through biomembrane channels. Cell. Mol. Biol. Lett. 1, 273–289 (1996)Google Scholar
  45. 45.
    Liebovitch, L.S., Fischbarg, J., Koniarek, J.P., Todorova, I., Wang, M.: Fractal model of ion-channel kinetics. Biochim. Biophys. Acta Biomembr. 896, 173–180 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jacek Siódmiak
    • 1
  • Jan J. Uher
    • 2
  • Ivan Santamaría-Holek
    • 3
  • Natalia Kruszewska
    • 1
  • Adam Gadomski
    • 1
  1. 1.Department of Modeling of Physicochemical Processes, Institute of Mathematics and PhysicsUniversity of Technology and Life SciencesBydgoszczPoland
  2. 2.ZSMiOBielsko BiałaPoland
  3. 3.Facultad de CienciasUniversidad Nacional Autonoma de Mexico Circuito, exterior de Ciudad UniversitariaMexico CityMexico

Personalised recommendations