Advertisement

Journal of Biological Physics

, Volume 33, Issue 2, pp 161–170 | Cite as

Nonequilibrium Statistical Model of Active Transport of Ions and ATP Production in Mitochondria

  • Alexey V. Melkikh
  • Vladimir D. Seleznev
Research Paper

Abstract

A model of the active transport of ions through internal membranes of mitochondria is proposed. If concentrations of ions in a cell are known, this model allows calculating concentrations of all main ions (H+, Ca+2, K+, Mg2+, Na+, Cl) in the mitochondrion matrix and the resting potential across the membrane. The theoretical values satisfactorily agree with available experimental data on the concentrations and the potentials, including different operating regimes of the adenosine triphosphate (ATP) synthetase (the main regime, short circuiting or ATP synthetase blocking). The active transport of Mg2+ ions in exchange for protons was assumed. In accordance with the model, the ATP synthetase operation is possible only if the stoichiometric coefficient of protons is 3.

Keywords

Active transport of ions Mitochondria ATP production Resting potential Mathematical model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Melkikh, A.V., Seleznev, V.D.: Models of active transport of ions in biomembranes of various types of cells. J. Theor. Biol. 324(3), 403–412 (2005)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Melkikh, A.V., Seleznev, V.D.: Requirements on models and models of active transport of ions in biomembranes. Bull. Math. Biol. 68(2), 385–399 (2006)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Melkikh, A.V., Seleznev, V.D.: Model of active transport of ions in biomembranes on ATP-dependent change of height of diffusion barriers to ions. J. Theor. Biol. 242(3), 617–626 (2006)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Pokhilko, A.V., Ataullakhanov, F.I., Holmuhamedov, E.L.: Mathematical model of mitochondrial ionic homeostasis: three modes of Ca2+ transport. J. Theor. Biol. 243(1), 152–169 (2006)CrossRefGoogle Scholar
  5. 5.
    Bertram, R., Pedersen, M.G., Luciani, D.S., Sherman, A.: A simplified model for mitochondrial ATP production. J. Theor. Biol. 243(4), 575–586 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Magnus, G., Keizer, J.: Minimal model of β-cell mitochondrial Ca2+ handling. Am. J. Physiol. 273, 717–733 (1997)Google Scholar
  7. 7.
    Selivanov, V.A., Ichas, F., Holmuhamedov, E.L., Jouaville, L.S., Evtodienko, Y.V., Mazat, J.P.: A model of mitochondrial Ca2+-induced Ca2+ release simulating the Ca2+ oscillations and spikes generated by mitochondria. Biophys. Chem. 72, 111–121 (1998)CrossRefGoogle Scholar
  8. 8.
    Lemeshko, V.V.: Model of the outer membrane potential generation by the inner membrane of mitochondria. Biophys. J. 82, 684–692 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Nicholls, D.G.: Bioenergetics and Introduction to the Chemiosmotic Theory. Academic Press, New York (1982)Google Scholar
  10. 10.
    Garlid, K.D.: Physiology of mitochondria. In: Sperelakis, N. (ed.) Cell Physiology Sourcebook, 3rd edn. pp. 139–151. Academic Press, San Diego (2001)Google Scholar
  11. 11.
    Kitano, H.: Biological robustness. Nature 5, 826–837 (2004)Google Scholar
  12. 12.
    Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J., Doyle, J.: Robustness of cellular functions. Cell 118, 675–685 (2004)CrossRefGoogle Scholar
  13. 13.
    Bernardi, P.: Mitochondrial transport of cations: channels, exchangers, and permeability transition. Phys. Rev. 79(4), 1127–1155 (1999)Google Scholar
  14. 14.
    Berridge, M.J., Bootman, M.D., Roderick, H.L.: Calcium signaling: dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol. 4, 517–529 (2003)CrossRefGoogle Scholar
  15. 15.
    Duchen, M.R.: Contributions of mitochondria to animal physiology: from homeostatic sensor to calcium signaling and cell death. J. Physiol. 516, (Part 1), 1–17 (1999)CrossRefGoogle Scholar
  16. 16.
    Kroemer, G., Martin, S.L.: Caspase-independent cell death. Nat. Med. 11, 725–730 (2005)CrossRefGoogle Scholar
  17. 17.
    Bowser, D.N., Petrou, S., Panchal, R.G., Smart, M.L., Williams, D.A.: Release of mitochondria Ca2+ via the permeability transition activates endoplasmic reticulum Ca2+ uptake. FASEB J. 16, 1105–1107 (2002)Google Scholar
  18. 18.
    Lin, X., Varnai, P., Csordas, G., Balla, A., Nagai, T., Miyawaki, A., Balla, T., Hajnoszky, G.: Control of calcium signal propagation to the mitochondria by inositol 1,4,5-trisphosphate-binding proteins. J. Biol. Chem. 280, 12820–12832 (2005)CrossRefGoogle Scholar
  19. 19.
    Jung, D.W., Brierly, G.P.: Matrix free Mg2+ and the regulation of mitochondrial volume. Am. J. Physiol. Cell Physiol. 277, 1194–1201 (1999)Google Scholar
  20. 20.
    Murphy, E.: Mysteries of magnesium homeostasis. Circ. Res. 86(3), 245–248 (2000)Google Scholar
  21. 21.
    Melkikh, A.V., Seleznev, V.D.: Models of active transport of neurotransmitters in synaptic vesicles. J. Theor. Biol. 248(2), 350–353 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Ural State Technical UniversityYekaterinburgRussia

Personalised recommendations