Journal of Biological Physics

, Volume 33, Issue 2, pp 109–127 | Cite as

Efficiency of Resonance Energy Transfer in Homo-Oligomeric Complexes of Proteins

Research Paper


A theoretical model is proposed for the apparent efficiency of fluorescence (Förster) resonance energy transfer (FRET) in mixtures of free monomers and homo-oligomeric protein complexes of uniform size. The model takes into account possible pathways for transfer of optical excitations from single donors to multiple acceptors and from multiple donors (non-simultaneously) to single acceptors. This necessary departure from the standard theory has been suggested in the literature, but it has only been successfully implemented for a few particular cases, such as for particular geometries of the oligomers. The predictions of the present theoretical model differ significantly from those of the standard theory, with the exception of the case of dimers, for which agreement is observed. This model therefore provides new insights into the FRET behavior of oligomers comprising more than two monomers, and also suggests means for determining the size of oligomeric protein complexes as well as the proportion of associated and unassociated monomers.


Förster (fluorescence) resonance energy transfer FRET Fluorescence theory Protein – protein interaction Protein association Protein self-association Interaction stoichiometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gomperts, B.D., Kramer, I.M., Tatham, P.E.R.: Signal Transduction. Academic, New York (2002)Google Scholar
  2. 2.
    Abbott, L.F., Regehr, W.G.: Synaptic computation. Nature 431, 796–803 (2004)CrossRefADSGoogle Scholar
  3. 3.
    Milligan, G., Ramsay, D., Pascal, G., Carrillo, J.J.: GPCR dimerisation. Life Sci. 74(2–3), 181–188 (2003)CrossRefGoogle Scholar
  4. 4.
    Angers, S., Salahpour, A., Bouvier, M.: Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435 (2002)CrossRefGoogle Scholar
  5. 5.
    Lippincott-Schwartz, J., Patterson, G.H.: Development and use of fluorescent protein markers in living cells. Science 300(5616), 87–91 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Zhang, J., Campbell, R.E., Ting, A.Y., Tsien, R.Y.: Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3(12), 906–918 (2002)CrossRefGoogle Scholar
  7. 7.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. 3rd edn. Springer, Berlin (2006)Google Scholar
  8. 8.
    Clegg, R.M.: Fluorescence resonance energy transfer. In: Fluorescence Imaging Spectroscopy and Microscopy, Wang, X.F. and Herman, B. (eds). Wiley, New York (1996)Google Scholar
  9. 9.
    Selvin, P.R.: Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334 (1995)CrossRefGoogle Scholar
  10. 10.
    Gordon, G.W., Berry, G., Liang, X.H., Levine, B., Herman, B.: Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74(5), 2702–2713 (1998)ADSGoogle Scholar
  11. 11.
    Li, M., Reddy, L.G., Bennett, R., Silva, N.D., Jones, L.R., Thomas, D.D.: A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys. J. 76, 2587–2599 (1999)Google Scholar
  12. 12.
    Zacharias, D.A., Baird, G.S., Tsien, R.Y.: Recent advances in technology for measuring and manipulating cell signals. Curr. Opin. Cell Biol. 10, 416–421 (2000)Google Scholar
  13. 13.
    Kenworthy, A.K., Petranova, N., Edidin, M.: High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell. 11(5), 1645–1655 (2000)Google Scholar
  14. 14.
    Xia, Z., Liu, Y.: Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81(4), 2395–2402 (2001)CrossRefADSGoogle Scholar
  15. 15.
    Wouters, F.S., Verveer, P.J., Bastiaens, P.I.: Imaging biochemistry inside cells. Trends Cell Biol. 11(5), 203–211 (2001)CrossRefGoogle Scholar
  16. 16.
    Hoppe, A., Christensen, K., Swanson, J.A.: Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83(6), 3652–3664 (2002)ADSGoogle Scholar
  17. 17.
    Edelman, L.M., Cheong, R., Kahn, J.D.: Fluorescence resonance energy transfer over approximately 130 basepairs in hyperstable Lac repressor-DNA loops. Biophys. J. 84(2), 1131–1145 (2003)ADSGoogle Scholar
  18. 18.
    Lippincott-Schwartz, J., Snapp, E., Kenworthy, A.: Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2(6), 444–456 (2001)CrossRefGoogle Scholar
  19. 19.
    Karpova, T.S., Baumann, C.T., He, L., Wu, X., Grammer, A., Lipsky, P., Hager, G.L., McNally, J.G.: Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microsc. 209(1), 56–70 (2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Zal, T., Gascoine, N.R.: Photobleaching-corrected FRET efficiency imaging of live cells. Biophys. J. 86, 3923–3939 (2004)CrossRefGoogle Scholar
  21. 21.
    Raicu, V., Jansma, D.B., Miller, R.J.D., Friesen, J.D.: Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem. J. 385, 265–277 (2005)CrossRefGoogle Scholar
  22. 22.
    Meyer, B.H., Segura, J.-M., Martinez, K.L., Hovius, R., George, N., Johnsson, K., Vogel, H.: FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. U. S. A. 103(7), 2138–2143 (2006)CrossRefADSGoogle Scholar
  23. 23.
    Elangovan, M., Day, R.N., Periasamy, A.: Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. J. Microsc. 205(1), 3–14 (2002)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Chen, H., Puhl, H.R., Koushik, S., Vogel, S., Ikeda, S.: Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys. J. 91(5), L39–L41 (2006)CrossRefGoogle Scholar
  25. 25.
    Adair, B.D., Engelman, D.M.: Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 33(18), 5539–5544 (1994)CrossRefGoogle Scholar
  26. 26.
    Goldsmith, P., Backlund, P.S., Jr, Rossiter, K., Carter, A., Milligan, G., Unson, C.G., Spiegel, A.: Purification of heterotrimeric GTP-binding proteins from brain: identification of a novel form of Go. Biochemistry 27(18), 7085–7090 (1988)CrossRefGoogle Scholar
  27. 27.
    Moens, P.D., Yee, D.J., dos Remedios, C.G.: Determination of the radial coordinate of Cys-374 in F-actin using fluorescence resonance energy transfer spectroscopy: Effect of phalloidin on polymer assembly. Biochemistry 33(44), 13102–13108 (1994)CrossRefGoogle Scholar
  28. 28.
    Watrob, H.M., Pan, C.P., Barkley, M.D.: Two-step FRET as a structural tool. J. Am. Chem. Soc. 125(24), 7336–7343 (2003)CrossRefGoogle Scholar
  29. 29.
    Watrob, H., Liu, W., Chen, Y., Bartlett, S.G., Ben-Jacobson, L., Barkley, M.D.: Solution conformation of EcoRI restriction endonuclease changes upon binding of cognate DNA and Mg2+ cofactor. Biochemistry 40(3), 683–692 (2001)CrossRefGoogle Scholar
  30. 30.
    Sawyer, W.H., Chan, R.Y., Eccleston, J.F., Davidson, B.E., Samat, S.A., Yan, Y.: Distances between DNA and ATP binding sites in the TyrR–DNA complex. Biochemistry 39(19), 5653–5661 (2000)CrossRefGoogle Scholar
  31. 31.
    Wimley, W.C., White, S.H.: Determining the membrane topology of peptides by fluorescence quenching. Biochemistry 39(1), 161–170 (2000)CrossRefGoogle Scholar
  32. 32.
    Forde, T.S., Hanley, Q.S.: Following FRET through five energy transfer steps: spectroscopic photobleaching, recovery of spectra, and a sequential mechanism of FRET. Photochem. Photobiol. Sci. 4, 609–616 (2005)CrossRefGoogle Scholar
  33. 33.
    Wolber, P.K., Hudson, B.S.: An analytic solution to the Förster energy transfer problem in two dimensions. Biophys. J. 28(2), 197–210 (1979)ADSGoogle Scholar
  34. 34.
    Dewey, T.G., Hammes, G.G.: Calculation on fluorescence resonance energy transfer on surfaces. Biophys. J. 32(3), 1023–1035 (1980)ADSGoogle Scholar
  35. 35.
    Song, L., Hennink, E.J., Young, I.T., Tanke, H.J.: Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68(6), 2588–2600 (1995)ADSGoogle Scholar
  36. 36.
    Kubitscheck, U., Schweitzer-Stenner, R., Arndt-Jovin, D.J., Jovin, T.M., Pecht, I.: Distribution of type I Fc-receptors on the surface of mast cells probed by fluorescence resonance energy transfer. Biophys. J. 64, 110–120 (1993)ADSGoogle Scholar
  37. 37.
    Post, J.N., Lidke, K.A., Rieger, B., Arndt-Jovin, D.J.: One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett. 579, 325–330 (2005)CrossRefGoogle Scholar
  38. 38.
    Denk, W., Strickler, J.H., Webb, W.W.: Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)CrossRefADSGoogle Scholar
  39. 39.
    Vereb, G., Jares-Erijman, E., Selvin, P.R., Jovin, T.M.: Temporally and spectrally resolved imaging microscopy of lanthanide chelates. Biophys. J. 74, 2210–2222 (1998)ADSGoogle Scholar
  40. 40.
    Zimmermann, T., Rietdorf, J., Girod, A., Georget, V., Pepperkok, R.: Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531(2), 245–249 (2002)CrossRefGoogle Scholar
  41. 41.
    Chirico, G., Cannone, F., Diaspro, A., Bologna, S., Pellegrini, V., Nifosi, R., Beltram, F.: Multiphoton switching dynamics of single green fluorescent proteins. Phys. Rev. E. 70, 030901(R) (2004)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Physics and Department of Biological SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations