Skip to main content

Advertisement

Log in

Efficiency of Resonance Energy Transfer in Homo-Oligomeric Complexes of Proteins

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A theoretical model is proposed for the apparent efficiency of fluorescence (Förster) resonance energy transfer (FRET) in mixtures of free monomers and homo-oligomeric protein complexes of uniform size. The model takes into account possible pathways for transfer of optical excitations from single donors to multiple acceptors and from multiple donors (non-simultaneously) to single acceptors. This necessary departure from the standard theory has been suggested in the literature, but it has only been successfully implemented for a few particular cases, such as for particular geometries of the oligomers. The predictions of the present theoretical model differ significantly from those of the standard theory, with the exception of the case of dimers, for which agreement is observed. This model therefore provides new insights into the FRET behavior of oligomers comprising more than two monomers, and also suggests means for determining the size of oligomeric protein complexes as well as the proportion of associated and unassociated monomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gomperts, B.D., Kramer, I.M., Tatham, P.E.R.: Signal Transduction. Academic, New York (2002)

    Google Scholar 

  2. Abbott, L.F., Regehr, W.G.: Synaptic computation. Nature 431, 796–803 (2004)

    Article  ADS  Google Scholar 

  3. Milligan, G., Ramsay, D., Pascal, G., Carrillo, J.J.: GPCR dimerisation. Life Sci. 74(2–3), 181–188 (2003)

    Article  Google Scholar 

  4. Angers, S., Salahpour, A., Bouvier, M.: Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu. Rev. Pharmacol. Toxicol. 42, 409–435 (2002)

    Article  Google Scholar 

  5. Lippincott-Schwartz, J., Patterson, G.H.: Development and use of fluorescent protein markers in living cells. Science 300(5616), 87–91 (2003)

    Article  ADS  Google Scholar 

  6. Zhang, J., Campbell, R.E., Ting, A.Y., Tsien, R.Y.: Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3(12), 906–918 (2002)

    Article  Google Scholar 

  7. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. 3rd edn. Springer, Berlin (2006)

    Google Scholar 

  8. Clegg, R.M.: Fluorescence resonance energy transfer. In: Fluorescence Imaging Spectroscopy and Microscopy, Wang, X.F. and Herman, B. (eds). Wiley, New York (1996)

  9. Selvin, P.R.: Fluorescence resonance energy transfer. Methods Enzymol. 246, 300–334 (1995)

    Article  Google Scholar 

  10. Gordon, G.W., Berry, G., Liang, X.H., Levine, B., Herman, B.: Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74(5), 2702–2713 (1998)

    ADS  Google Scholar 

  11. Li, M., Reddy, L.G., Bennett, R., Silva, N.D., Jones, L.R., Thomas, D.D.: A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban. Biophys. J. 76, 2587–2599 (1999)

    Google Scholar 

  12. Zacharias, D.A., Baird, G.S., Tsien, R.Y.: Recent advances in technology for measuring and manipulating cell signals. Curr. Opin. Cell Biol. 10, 416–421 (2000)

    Google Scholar 

  13. Kenworthy, A.K., Petranova, N., Edidin, M.: High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Mol. Biol. Cell. 11(5), 1645–1655 (2000)

    Google Scholar 

  14. Xia, Z., Liu, Y.: Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys. J. 81(4), 2395–2402 (2001)

    Article  ADS  Google Scholar 

  15. Wouters, F.S., Verveer, P.J., Bastiaens, P.I.: Imaging biochemistry inside cells. Trends Cell Biol. 11(5), 203–211 (2001)

    Article  Google Scholar 

  16. Hoppe, A., Christensen, K., Swanson, J.A.: Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys. J. 83(6), 3652–3664 (2002)

    ADS  Google Scholar 

  17. Edelman, L.M., Cheong, R., Kahn, J.D.: Fluorescence resonance energy transfer over approximately 130 basepairs in hyperstable Lac repressor-DNA loops. Biophys. J. 84(2), 1131–1145 (2003)

    ADS  Google Scholar 

  18. Lippincott-Schwartz, J., Snapp, E., Kenworthy, A.: Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2(6), 444–456 (2001)

    Article  Google Scholar 

  19. Karpova, T.S., Baumann, C.T., He, L., Wu, X., Grammer, A., Lipsky, P., Hager, G.L., McNally, J.G.: Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J. Microsc. 209(1), 56–70 (2003)

    Article  MathSciNet  Google Scholar 

  20. Zal, T., Gascoine, N.R.: Photobleaching-corrected FRET efficiency imaging of live cells. Biophys. J. 86, 3923–3939 (2004)

    Article  Google Scholar 

  21. Raicu, V., Jansma, D.B., Miller, R.J.D., Friesen, J.D.: Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem. J. 385, 265–277 (2005)

    Article  Google Scholar 

  22. Meyer, B.H., Segura, J.-M., Martinez, K.L., Hovius, R., George, N., Johnsson, K., Vogel, H.: FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. U. S. A. 103(7), 2138–2143 (2006)

    Article  ADS  Google Scholar 

  23. Elangovan, M., Day, R.N., Periasamy, A.: Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. J. Microsc. 205(1), 3–14 (2002)

    Article  MathSciNet  Google Scholar 

  24. Chen, H., Puhl, H.R., Koushik, S., Vogel, S., Ikeda, S.: Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys. J. 91(5), L39–L41 (2006)

    Article  Google Scholar 

  25. Adair, B.D., Engelman, D.M.: Glycophorin A helical transmembrane domains dimerize in phospholipid bilayers: a resonance energy transfer study. Biochemistry 33(18), 5539–5544 (1994)

    Article  Google Scholar 

  26. Goldsmith, P., Backlund, P.S., Jr, Rossiter, K., Carter, A., Milligan, G., Unson, C.G., Spiegel, A.: Purification of heterotrimeric GTP-binding proteins from brain: identification of a novel form of Go. Biochemistry 27(18), 7085–7090 (1988)

    Article  Google Scholar 

  27. Moens, P.D., Yee, D.J., dos Remedios, C.G.: Determination of the radial coordinate of Cys-374 in F-actin using fluorescence resonance energy transfer spectroscopy: Effect of phalloidin on polymer assembly. Biochemistry 33(44), 13102–13108 (1994)

    Article  Google Scholar 

  28. Watrob, H.M., Pan, C.P., Barkley, M.D.: Two-step FRET as a structural tool. J. Am. Chem. Soc. 125(24), 7336–7343 (2003)

    Article  Google Scholar 

  29. Watrob, H., Liu, W., Chen, Y., Bartlett, S.G., Ben-Jacobson, L., Barkley, M.D.: Solution conformation of EcoRI restriction endonuclease changes upon binding of cognate DNA and Mg2+ cofactor. Biochemistry 40(3), 683–692 (2001)

    Article  Google Scholar 

  30. Sawyer, W.H., Chan, R.Y., Eccleston, J.F., Davidson, B.E., Samat, S.A., Yan, Y.: Distances between DNA and ATP binding sites in the TyrR–DNA complex. Biochemistry 39(19), 5653–5661 (2000)

    Article  Google Scholar 

  31. Wimley, W.C., White, S.H.: Determining the membrane topology of peptides by fluorescence quenching. Biochemistry 39(1), 161–170 (2000)

    Article  Google Scholar 

  32. Forde, T.S., Hanley, Q.S.: Following FRET through five energy transfer steps: spectroscopic photobleaching, recovery of spectra, and a sequential mechanism of FRET. Photochem. Photobiol. Sci. 4, 609–616 (2005)

    Article  Google Scholar 

  33. Wolber, P.K., Hudson, B.S.: An analytic solution to the Förster energy transfer problem in two dimensions. Biophys. J. 28(2), 197–210 (1979)

    ADS  Google Scholar 

  34. Dewey, T.G., Hammes, G.G.: Calculation on fluorescence resonance energy transfer on surfaces. Biophys. J. 32(3), 1023–1035 (1980)

    ADS  Google Scholar 

  35. Song, L., Hennink, E.J., Young, I.T., Tanke, H.J.: Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68(6), 2588–2600 (1995)

    ADS  Google Scholar 

  36. Kubitscheck, U., Schweitzer-Stenner, R., Arndt-Jovin, D.J., Jovin, T.M., Pecht, I.: Distribution of type I Fc-receptors on the surface of mast cells probed by fluorescence resonance energy transfer. Biophys. J. 64, 110–120 (1993)

    ADS  Google Scholar 

  37. Post, J.N., Lidke, K.A., Rieger, B., Arndt-Jovin, D.J.: One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. FEBS Lett. 579, 325–330 (2005)

    Article  Google Scholar 

  38. Denk, W., Strickler, J.H., Webb, W.W.: Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  ADS  Google Scholar 

  39. Vereb, G., Jares-Erijman, E., Selvin, P.R., Jovin, T.M.: Temporally and spectrally resolved imaging microscopy of lanthanide chelates. Biophys. J. 74, 2210–2222 (1998)

    ADS  Google Scholar 

  40. Zimmermann, T., Rietdorf, J., Girod, A., Georget, V., Pepperkok, R.: Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531(2), 245–249 (2002)

    Article  Google Scholar 

  41. Chirico, G., Cannone, F., Diaspro, A., Bologna, S., Pellegrini, V., Nifosi, R., Beltram, F.: Multiphoton switching dynamics of single green fluorescent proteins. Phys. Rev. E. 70, 030901(R) (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerică Raicu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raicu, V. Efficiency of Resonance Energy Transfer in Homo-Oligomeric Complexes of Proteins. J Biol Phys 33, 109–127 (2007). https://doi.org/10.1007/s10867-007-9046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-007-9046-z

Keywords

Navigation