Journal of Biological Physics

, Volume 32, Issue 5, pp 369–381 | Cite as

Morphology and Phase Behavior of Two-Component Lipid Membranes

Research Paper


The stability and shapes of domains with different bending rigidities in lipid membranes are investigated. These domains can be formed from the inclusion of an impurity in a lipid membrane or from the phase separation within the membrane. We show that, for weak line tensions, surface tensions and finite spontaneous curvatures, an equilibrium phase of protruding circular domains or striped domains may be obtained. We also predict a possible phase transition between the investigated morphologies.

Key words

lipid membrane phase separation phase transition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972)CrossRefADSGoogle Scholar
  2. 2.
    Lipowsky, R., Sackmann, E.: Handbook of Biological Physics, vol.1. Elsevier, Amsterdam (1995)MATHGoogle Scholar
  3. 3.
    Seifert, U.: Configurations of fluid membranes and vesicles. Adv. Phys. 46, 13–137 (1997)CrossRefADSGoogle Scholar
  4. 4.
    Ou-Yang, Z-C., Liu, J-X., Xie, Y-Z.: Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases. World Scientific, Singapore (1999)MATHGoogle Scholar
  5. 5.
    Veatch, S.L., Keller, S.L.: Organization in lipid membranes containing cholesterol. Phys. Rev. Lett. 89, 2942–2950 (2002)CrossRefADSGoogle Scholar
  6. 6.
    Gennis, R.B.: Biomembranes. Springer, Berlin (1989)Google Scholar
  7. 7.
    Gaus, K., Gratton, E., Kable, E.P.W., Jones, A.S., Gelissen, I., Kritharides, L., Jessup, W.: Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc. Natl. Acad. Sci. USA. 100, 15554–15559 (2003)CrossRefADSGoogle Scholar
  8. 8.
    Rauch, C., Farge, E.: Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophys. J. 78, 3036–3047 (2000)CrossRefGoogle Scholar
  9. 9.
    Veatch, S.L., Polozov, I.V., Gawrisch, K., Keller, S.L.: Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys. J. 86, 2910–2922 (2004)Google Scholar
  10. 10.
    Leidy, C., Wolkers, W.F., Jorgensen, K., Mouritsen, O.G., Crowe, J.H.: Fabrication of nanometer-sized protein patterns using atomic force microscopy and selective immobilization. Biophys. J. 80, 1891–1899 (2001)Google Scholar
  11. 11.
    Veatch, S.L., Keller, S.L.: Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85, 3074–3083 (2003)Google Scholar
  12. 12.
    Baumgart, T., Hess, S.T., Webb, W.W.: Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425, 821–824 (2003)CrossRefADSGoogle Scholar
  13. 13.
    Lasic, D.D.: Liposomes in Gene Delivery. CRC Press, Boca Raton, FL (1997)Google Scholar
  14. 14.
    Lasic, D.D., Papahadjopoulos, D.: Medical Applications of Liposomes. Elsevier, Amsterdam (1998)Google Scholar
  15. 15.
    Sackmann, E.: Supported membranes: Scientific and practical applications. Science 271, 43–48 (1996)CrossRefADSGoogle Scholar
  16. 16.
    Keller, S.L., Pitcher, W.H., III, Huestis, W.H., McConnell, H.M.: Red blood cell lipids form immiscible liquids. Phys. Rev. Lett. 81, 5019–5022 (1998)CrossRefADSGoogle Scholar
  17. 17.
    Kinnunen, P.K.J.: On the principles of functional ordering in biological membranes. Chem. Phys. Lipids 57, 375–399 (1991)CrossRefGoogle Scholar
  18. 18.
    Edidin, M.: Lipid microdomains in cell surface membranes. Curr. Opin. Struct. Biol. 7, 528–532 (1997)CrossRefGoogle Scholar
  19. 19.
    Taniguchi, T., Kawakatsu, K., Andelman, D., Kawakatsu, T.: Phase transitions and shapes of two component membranes and vesicles II; weak segregation limit. J. Phys. II France 4, 1333–1362 (1994)CrossRefGoogle Scholar
  20. 20.
    Jülicher, F., Lipowsky, R.: Domain induced budding of vesicles. Phys. Rev. Lett. 70, 2964–2967 (1993)CrossRefADSGoogle Scholar
  21. 21.
    Jülicher, F., Lipowsky, R.: Shape transformation of vesicles with intramembrane domains. Phys. Rev. E 53, 2670–2683 (1996)ADSGoogle Scholar
  22. 22.
    Góźdź, W.T., Gompper, G.: Phase behavior of two component membranes. Colloids Surf. A: Physicochem. Eng. Aspects 208, 241–251 (2002)CrossRefGoogle Scholar
  23. 23.
    Góźdź, W.T., Gompper, G.: Shape transformation of two component membranes under weak tension. Europhys. Lett. 55, 587–593 (2001)CrossRefADSGoogle Scholar
  24. 24.
    Harden, J.L., MacKintosh, F.C., Olmsted, P.D.: Budding and domain shape transformations in mixed lipid films and bilayer membranes. Phys. Rev. E 72, (2005)Google Scholar
  25. 25.
    Harden, J.L., MacKintosh, J.L.: Shape transformations of domains in mixed fluid films and bilayer membranes. Europhys. Lett. 28, 495–500 (1994)CrossRefADSGoogle Scholar
  26. 26.
    Góźdź, W.T., Gompper, G.: Composition driven shape transformation of membranes of complex topology. Phys. Rev. Lett. 80, 4213–4216 (1998)CrossRefADSGoogle Scholar
  27. 27.
    Góźdź, W.T., Gompper, G.: Shapes and shape transformations of two-component membranes of complex topology. Phys. Rev. E 59, 4305–4316 (1999)CrossRefADSGoogle Scholar
  28. 28.
    Diamant, H., Witten, T., Gopal, A., Lee, K.: Unstable topography of biphasic surfactant monolayers. Europhys. Lett. 55, 171–177 (2000)CrossRefADSGoogle Scholar
  29. 29.
    Capovilla, R., Guven, J., Santiago, J.A.: Lipid membranes with an edge. Phys. Rev. E 66, (2002)Google Scholar
  30. 30.
    Capovilla, R., Guven, J.: Stresses in lipid membranes. J. Phys. A: Math Gen. 35, 6233–6247 (2002)MATHCrossRefADSMathSciNetGoogle Scholar
  31. 31.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)MATHGoogle Scholar
  32. 32.
    Leibler, S.: Curvature instability in membranes. Journal de Physique 47, 507–516 (1986)CrossRefGoogle Scholar
  33. 33.
    Leibler, S., Andelman, D.: Ordered and curved meso-structures in membranes and amphiphilic films. Journal de Physique 48, 2013–2018 (1987)CrossRefGoogle Scholar
  34. 34.
    Yin, Y., Chen, Y., Ni, D., Shi, H., Fan, Q.: Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes. J. Biomech. 38, 1433–1440 (2005)CrossRefGoogle Scholar
  35. 35.
    Lipowsky, R., Dimova, R.: Domains in membranes and vesicles. J. Phys.: Condens. Matter 15, S31–S45 (2005)CrossRefGoogle Scholar
  36. 36.
    Boal, D.: Mechanics of the Cell. Cambridge University Press, Cambridge, England (2002)Google Scholar
  37. 37.
    Baekmark, T.R., Elender, G., Lasic, D.D., Sackmann, E.: Conformational transitions of mixed monolayers of phospholipids and poly (ethylene oxide) lipopolymers and interaction forces with sol-surfaces. Langmuir 11, 3975–3987 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Key Laboratory of Failure Mechanics, Department of Engineering MechanicsTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations