Journal of Biological Physics

, Volume 31, Issue 1, pp 3–22 | Cite as

A Delay-Diffusion Model of Marine Plankton Ecosystem Exhibiting Cyclic Nature of Blooms

  • B. Mukhopadhyay
  • R. Bhattacharyya


The cyclic nature of blooms is a very interesting characteristic of marine plankton ecosystem. Release of toxins by some phytoplanktons has an important role on planktonic interactions and hence on regulating the blooms. A mathematical model describing the phytoplankton-zooplankton interaction with these characteristics is studied. The time needed for liberation of toxins by phytoplanktons is considered. To account for the spatial heterogeneity of an aquatic environment, diffusivity of different plankton populations is also incorporated into the system. Stability and bifurcation behaviour of different steady states are analysed.

Key words

phytoplankton zooplankton bloom toxin time delay diffusion Hopf-bifurcation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duinker, J. and Wefer, G.: Das CO2-Problem und die Rolle des Ozeans, Naturwissenschahten 81 (1994), 237–242.Google Scholar
  2. 2.
    Provasoli, L.: Recent progress: An overview, in Taylor and Seliger (eds.), Toxic Dinoflagellate Blooms, Elsevier/North-Holland, 1978, p. 1.Google Scholar
  3. 3.
    Nishijima, T. and Hata, Y.: The dynamics of vitamin B12 and its relation to the outbreak of Chattonella red tides in Harima Nada, the Seto inland sea, in T. Okaichi (ed.), Red Tides: Biology, Environmental Science and Toxicology, Elsevier, Amsterdam, 1989, p. 257.Google Scholar
  4. 4.
    Truscott, J.E. and Brindley, J.: Ocean Plankton Populations as Excitable Media, Bull. Math. Biol. 56 (1994), 981–998.Google Scholar
  5. 5.
    Almeida Machado, P.: Dinoflagellate blooms on the Brazilian South Atlantic coast, in Taylor and Seligers (eds.), Toxic Dinoflagellate Blooms, Elsevier, 1978, p. 29.Google Scholar
  6. 6.
    Work, T.M. et al.: Domonic acid in toxication of brown pelicans and cormorants in Santa Cruz, California, in T.J. Smayda and Y. Shimuza (eds.), Toxic Phytoplankton Blooms in the Sea, Vol. 3, Elsevier, 1993, pp. 643–649.Google Scholar
  7. 7.
    Steidinger, K.A. et al.: Pfiesteria Piscicida a New Toxic Dinoflagellate Genus and Species of the Order Dinamoebales, J. Phycol. 32 (1996), 157–164.CrossRefGoogle Scholar
  8. 8.
    Nielsen, T.G. et al.: Effects of a Chrysochromulina polylepis Subsurface Bloom on the Plankton Community, Mar. Ecol. Prog. Ser. 62 (1990), 21–35.Google Scholar
  9. 9.
    Aure, J. and Rey, F.: Oceanographic Conditions in the Sandsfjord System, Western Norway, After a Bloom of the Prymnesiophyte Prymnesium parvum Carter in August 1990, Sarsia 76 (1992), 247–254.Google Scholar
  10. 10.
    Hallegraeff, G.M.: A Review of Harmful Algae Blooms and the Apparent Global Increase, Phycologia 32 (1993), 79–99.Google Scholar
  11. 11.
    Keating, K.I.: Algal metabolite influence on bloom sequence in eutrophic freshwater ponds. E.P.A. Ecological Monograph Series (EPA. 600/3-76-081. Washington, DC), 1976, p. l48.Google Scholar
  12. 12.
    Kirk, K. and Gilbert, J.: Variations in Herbivore Response to Chemical Defences: Zooplankton Foraging on Toxic Cyanobacteria, Ecology 73 (1992), 2208.Google Scholar
  13. 13.
    Fay, P.: The Blue-Greens, Arnold, London, 1983.Google Scholar
  14. 14.
    Buskey, E.J. and Stockwell, D.A.: Effects of a persistent ‘brown tide’ on zooplankton population in the Laguna Madre of Southern Texas, in T.J. Smayda and Y. Shimuzu (eds.), Toxic Phytoplankton Blooms in the Sea. Elsevier, Amsterdam, 1993, pp. 659–666.Google Scholar
  15. 15.
    Estep, K.W. et al.: Predation by Copepods upon Natural Populations of Phaeocystis pouchetii as a Function of the Physiological State of the Prey, Mar. Ecol. Prog. Ser. 67 (1990), 235–249.Google Scholar
  16. 16.
    Hansen, F.C.: Tropic Interaction Between Zooplankton and Phaeocystis cf. Globosa., Helgol Meeresunters 49, 283–293.Google Scholar
  17. 17.
    Huntley, M.E. et al.: Chemically Mediated Rejection of Dinoflagellate Prey by the Copepods Calanus pacificus and Paracalanus parvus: Mechanism, Occurance and Significance, Mar. Ecol. Prog. Ser. 28 (1986), 105–120.Google Scholar
  18. 18.
    Buskey, E.J. and Hyatt, C.J.: Effects of the Texas (USA) Brown Tide Alga on Planktonic Grazers, Mar. Ecol. Prog. Ser. 126 (1995), 285–292.Google Scholar
  19. 19.
    Nejstgaard, J.C. and Solberg, P.T.: Repression of Copepod Feeding and Fecundity by the Toxic Haptophyte Prymnesium patelliferum, Sarsia 81 (1996), 339–344.Google Scholar
  20. 20.
    Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer, Dordrecht, 1992.Google Scholar
  21. 21.
    Cushing, J.M.: Integrodifferential Equations and Delay Models in Population Dynamics, Lect. Notes in Biomath., Vol. 20, Springer-Verlag, Berlin, 1977.Google Scholar
  22. 22.
    Kuang, Y.: Delay-Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993.Google Scholar
  23. 23.
    MacDonald, N.: Biological Delay Systems: Linear Stability Theory, Cambridge University Press, New York, 1989.Google Scholar
  24. 24.
    Chattopadhyay, J. et al.: A Delay Differential Equation Model on Harmful Algal Blooms in the Presence of Toxic Substances, IMA. J. Math. Appl. Med. Biol. 19 (2002), 137–161.PubMedGoogle Scholar
  25. 25.
    Steele, J.H.: Stability of plankton ecosystem, in M.B. Usher and M.H. Williams (eds.), Ecological Stability, Chapman and Hall, London, 1974.Google Scholar
  26. 26.
    Sjoberge, S.: Are Pelagic Systems Inherently Unstable? A Model Study, Ecol. Model. 3 (1977), 17–37.CrossRefGoogle Scholar
  27. 27.
    Okubo, A.: Diffusion and Ecological Problems: Modern Perspective, Interdisciplinary Applied Mathematics., Vol. 14, Springer, Berlin, 2001.Google Scholar
  28. 28.
    Murray, J.D.: Mathematical Biology, Springer, Berlin, 2002.Google Scholar
  29. 29.
    Edwards, A.M. and Brindley, J.: Zooplankton Mortality and the Dynamical Behaviour of Plankton Population Model, Bull. Math. Biol. 61 (1999), 303.CrossRefGoogle Scholar
  30. 30.
    Beltrami, E. and Carroll, T.O.: Modelling the Role of Viral Diseases in Recurrent Phytoplankton Blooms, J. Math. Biol. 32 (1994), 857–863.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Applied MathematicsUniversity of CalcuttaKolkataIndia

Personalised recommendations