Skip to main content

Advertisement

Log in

Adaptive step goals and rewards: a longitudinal growth model of daily steps for a smartphone-based walking intervention

  • Published:
Journal of Behavioral Medicine Aims and scope Submit manuscript

Abstract

Adaptive interventions are an emerging class of behavioral interventions that allow for individualized tailoring of intervention components over time to a person’s evolving needs. The purpose of this study was to evaluate an adaptive step goal + reward intervention, grounded in Social Cognitive Theory delivered via a smartphone application (Just Walk), using a mixed modeling approach. Participants (N = 20) were overweight (mean BMI = 33.8 ± 6.82 kg/m2), sedentary adults (90% female) interested in participating in a 14-week walking intervention. All participants received a Fitbit Zip that automatically synced with Just Walk to track daily steps. Step goals and expected points were delivered through the app every morning and were designed using a pseudo-random multisine algorithm that was a function of each participant’s median baseline steps. Self-report measures were also collected each morning and evening via daily surveys administered through the app. The linear mixed effects model showed that, on average, participants significantly increased their daily steps by 2650 (t = 8.25, p < 0.01) from baseline to intervention completion. A non-linear model with a quadratic time variable indicated an inflection point for increasing steps near the midpoint of the intervention and this effect was significant (t2 = −247, t = −5.01, p < 0.001). An adaptive step goal + rewards intervention using a smartphone app appears to be a feasible approach for increasing walking behavior in overweight adults. App satisfaction was high and participants enjoyed receiving variable goals each day. Future mHealth studies should consider the use of adaptive step goals + rewards in conjunction with other intervention components for increasing physical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams, M. A., Hurley, J. C., Todd, M., Bhuiyan, N., Jarrett, C. L., Tucker, W. J., et al. (2017). Adaptive goal setting and financial incentives: A 2 × 2 factorial randomized controlled trial to increase adults’ physical activity. BMC Public Health, 17, 286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adams, M. A., Sallis, J. F., Norman, G. J., Hovell, M. F., Hekler, E. B., & Perata, E. (2013). An adaptive physical activity intervention for overweight adults: A randomized controlled trial. PLoS ONE, 8, e82901.

    Article  PubMed  PubMed Central  Google Scholar 

  • Almirall, D., Nahum-Shani, I., Sherwood, N. E., & Murphy, S. A. (2014). Introduction to SMART designs for the development of adaptive interventions: With application to weight loss research. Translational Behavioral Medicine, 4, 260–274.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowen, D. J., Kreuter, M., Spring, B., et al. (2009). How we design feasibility studies. American Journal of Preventive Medicine, 36, 452–457.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins, L. M., Murphy, S. A., & Bierman, K. L. (2004). A conceptual framework for adaptive preventive interventions. Prevention Science, 5, 185–196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Craig, C. L., Marshall, A. L., Sjöström, M., Bauman, A. E., Booth, M. L., Ainsworth, B. E., et al. (2003). International physical activity questionnaire: 12-country reliability and validity. Medicine and Science in Sports and Exercise, 35, 1381–1395.

    Article  PubMed  Google Scholar 

  • Dallery, J., Cassidy, R. N., & Raiff, B. R. (2013). Single-case experimental designs to evaluate novel technology-based health interventions. Journal of Medical Internet Research, 15, e22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Direito, A., Carraça, E., Rawstorn, J., Whittaker, R., & Maddison, R. (2017). mHealth technologies to influence physical activity and sedentary behaviors: Behavior change techniques, systematic review and meta-analysis of randomized controlled trials. Annals of Behavioral Medicine, 51(2), 226–239.

    Article  PubMed  Google Scholar 

  • Evenson, K. R., Goto, M. M., & Furberg, R. D. (2015). Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity, 12, 159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson, T., Rowlands, A. V., Olds, T., & Maher, C. (2015). The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. International Journal of Behavioral Nutrition and Physical Activity, 12, 42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Freigoun, M. T., Martín, C. A., Magann, A. B., Rivera, D. E., Phatak, S. S., Korinek, E. V., et al. (2017). System identification of just walk: A behavioral mhealth intervention for promoting physical activity. In Proceedings of the 2017 American control conference, May 2426, Seattle, WA (in press).

  • Hekler, E. B., Buman, M. P., Poothakandiyil, N., Rivera, D. E., Dzierzewski, J. M., Morgan, A. A., et al. (2013). Exploring behavioral markers of long-term physical activity maintenance a case study of system identification modeling within a behavioral intervention. Health Education and Behavior, 40, 51S–62S.

    Article  PubMed  Google Scholar 

  • Hochberg, I., Feraru, G., Kozdoba, M., Mannor, S., Tennenholtz, M., & Yom-Tov, E. (2016). A reinforcement learning system to encourage physical activity in diabetes patients. arXiv:1605.04070

  • Hurley, J. C., Hollingshead, K. E., Todd, M., Jarrett, C. L., Tucker, W. J., Angadi, S. S., et al. (2015). The walking interventions through texting (WalkIT) trial: Rationale, design, and protocol for a factorial randomized controlled trial of adaptive interventions for overweight and obese, inactive adults. JMIR Research Protocols, 4, e108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kazemi, D. M., Borsari, B., Levine, M. J., Li, S., Lamberson, K. A., & Matta, L. A. (2017). A systematic review of the mhealth interventions to prevent alcohol and substance abuse. Journal of Health Communication, 22(5), 413–432.

    Article  PubMed  Google Scholar 

  • Lin, J. J., Mamykina, L., Lindtner, S., Delajoux, G., & Strub, H. B. (2006). Fish’n’Steps: Encouraging physical activity with an interactive computer game. In International conference on ubiquitous computing (pp. 261–278). Berlin: Springer.

  • Ljung, L. (1999). System identification: Theory for the use (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Martín, C. A., Deshpande, S., Hekler, E. B., & Rivera, D. E. (2015a). A system identification approach for improving behavioral interventions based on social cognitive theory. In IEEE 2015 American control conference (ACC) (pp. 5878–5883).

  • Martín, C. A., Rivera, D. E., & Hekler, E. B. (2015b). Design of informative identification experiments for behavioral interventions. In Proceedings of the 17th IFAC Symposium on system identification, Beijing, China (Vol. 48, pp. 1325–1330).

  • Martín, C. A., Rivera, D. E., Riley, W. T., Hekler, E. B., Buman, M. P., Adams, M. A., et al., (2014). A dynamical systems model of social cognitive theory. In IEEE 2014 American control conference (pp. 2407–2412).

  • Patrick, K., Hekler, E. B., Estrin, D., Mohr, D. C., Riper, H., Crane, D., et al. (2016). The pace of technologic change: Implications for digital health behavior intervention research. American Journal of Preventive Medicine, 51, 816–824.

    Article  PubMed  Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team, (2016). nlme: Linear and nonlinear mixed effects models. R package version 3.1-128. http://CRAN.R-project.org/package=nlme

  • Poirier, J., Bennett, W. L., Jerome, G. J., Shah, N. G., Lazo, M., Yeh, H. C., et al. (2016). Effectiveness of an activity tracker-and internet-based adaptive walking program for adults: A randomized controlled trial. Journal of medical Internet research, 18, e34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Riley, W. T., Martin, C. A., Rivera, D. E., et al. (2015a). Behav. Med. Pract. Policy Res.. doi:10.1007/s13142-015-0356-6

    Google Scholar 

  • Riley, W. T., Serrano, K. J., Nilsen, W., & Atienza, A. A. (2015b). Mobile and wireless technologies in health behavior and the potential for intensively adaptive interventions. Current Opinion in Psychology, 5, 67–71.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivera, D. E. (2012). Optimized behavioral interventions: What does system identification and control engineering have to offer? IFAC Proceedings Volumes, 45, 882–893.

    Article  Google Scholar 

  • Rivera, D. E., Pew, M. D., & Collins, L. M. (2007). Using engineering control principles to inform the design of adaptive interventions: A conceptual introduction. Drug and Alcohol Dependence, 88, S31–S40.

    Article  PubMed  Google Scholar 

  • Rivera, D. E., Pew, M. D., Collins, L. M., & Murphy, S. A. (2005). Engineering control approaches for the design and analysis of adaptive, time-varying interventions. The Methodology Center Technical Report, 05–73.

  • Schneider, P. L., Bassett, D. R., Jr., Thompson, D. L., Pronk, N. P., & Bielak, K. M. (2006). Effects of a 10,000 steps per day goal in overweight adults. The American Journal of Health Promotion, 21, 85–89.

    Article  PubMed  Google Scholar 

  • Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1–32.

    Article  PubMed  Google Scholar 

  • Spruijt-Metz, D., Hekler, E., Saranummi, N., Intille, S., Korhonen, I., Nilsen, W., et al. (2015a). Building new computational models to support health behavior change and maintenance: New opportunities in behavioral research. Translational Behavioral Medicine, 5, 335–346.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spruijt-Metz, D., Wen, C. K. F., O’Reilly, G., Li, M., Lee, S., Emken, B. A., et al. (2015b). Innovations in the use of interactive technology to support weight management. Current Obesity Reports, 4, 510–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stajkovic, A. D., & Luthans, F. (1979). Social cognitive theory and self-efficacy: Implications for motivation theory and practice. In R. M. Steers, L. W. Porter, & G. A. Bigley (Eds.), Motivation and Work Behavior (pp. 126–140). Boston: MA. McGraw-Hill.

    Google Scholar 

  • Timms, K. P., Rivera, D. E., Collins, L. M., & Piper, M. E. (2014). A dynamical systems approach to understanding self-regulation in smoking cessation behavior change. Nicotine & Tobacco Research, 16, S159–S168.

    Article  Google Scholar 

  • Troiano, R. P., Berrigan, D., Dodd, K. W., Masse, L. C., Tilert, T., & McDowell, M. (2008). Physical activity in the United States measured by accelerometer. Medicine and Science in Sports and Exercise, 40, 181.

    Article  PubMed  Google Scholar 

  • Tudor-Locke, C., Hatano, Y., Pangrazi, R. P., & Kang, M. (2008). Revisiting “how many steps are enough?”. Medicine and Science in Sports and Exercise, 40, S537.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Science Foundation (Grant Number IIS-1449751).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth V. Korinek.

Ethics declarations

Conflict of interest

Elizabeth V. Korinek, Sayali S. Phatak, Cesar A. Martin, Mohammad T. Freigoun, Daniel E. Rivera, Marc A. Adams, Pedja Klasnja, Matthew P. Buman, and Eric B. Hekler declare that they have no conflicts of interest.

Human and animal rights and Informed consent

All procedures followed were in accordance with ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korinek, E.V., Phatak, S.S., Martin, C.A. et al. Adaptive step goals and rewards: a longitudinal growth model of daily steps for a smartphone-based walking intervention. J Behav Med 41, 74–86 (2018). https://doi.org/10.1007/s10865-017-9878-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10865-017-9878-3

Keywords

Navigation