Journal of Behavioral Medicine

, Volume 39, Issue 6, pp 1043–1055 | Cite as

Visual analogue scale (VAS) measurement of antiretroviral adherence in people living with HIV (PLWH): a meta-analysis

  • David J. Finitsis
  • Jennifer A. Pellowski
  • Tania B. Huedo-Medina
  • Matthew C. Fox
  • Seth C. Kalichman


Effective treatment of HIV hinges upon maintaining adequate antiretroviral therapy adherence. Accurate, cost-effective measurement of medication adherence is needed to best respond to the HIV pandemic. The visual analogue scale (VAS) appears to be a simple and easy to use measure of adherence but the current literature on its use is mixed. This meta-analysis (1) describes VAS concordance with other measures of medication adherence and viral load; and (2) examines how research methods moderate the reported strength of the VAS–viral load relationship. Literature searches were conducted electronically and by hand with a total of 20 studies included in the present study. The VAS showed large strength associations with most other measures of adherence and a smaller association with viral load. More rigorous methodological quality significantly improved the VAS–viral load effect size. We conclude with optimization recommendations for VAS use in clinical practice and research design.


HIV Medication adherence Visual analogue scale Viral load Adherence measurement Meta-analysis Methodological quality mHealth 



This research was supported by U.S. Public Health Service Institutional National Research Service Award T32-MH074387 (PI: Seth C. Kalichman; trainees: David J. Finitsis and Jennifer A. Pellowski). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

David J. Finitsis, Jennifer A. Pellowski, Tania B. Huedo-Medina, Matthew C. Fox and Seth C. Kalichman declare that they have no conflict of interest.

Human and animal rights and Informed consent

All procedures followed were in accordance with ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.


  1. Abioye, A. I., Siope, A., Salako, A. A., Odesanya, M. O., Okuneye, T. A., Abioye, A. I., et al. (2015). Are there differences in disease progression and mortality among male and female HIV patients on antiretroviral therapy? A meta-analysis of observational cohorts. AIDS Care, 27, 1468–1486. doi: 10.1080/09540121.2015.1114994 CrossRefPubMedGoogle Scholar
  2. Amico, K. R., Fisher, W. A., Cornman, D. H., Shuper, P. A., Redding, C. G., Konkle-Parker, D. J., et al. (2006). Visual analog scale of ART adherence: Association with 3-day self-report and adherence barriers. Journal of Acquired Immune Deficiency Syndromes, 42, 445–449.CrossRefGoogle Scholar
  3. Assoumou, L., Descamps, D., Yerly, S., Dos Santos, G., Marcelin, A. G., Delaugerre, C., et al. (2013). Prevalence of HIV-1 drug resistance in treated patients with viral load > 50 copies/mL in 2009: A French nationwide study. Journal of Antimicrobial Chemotherapy. doi: 10.1093/jac/dkt033 Google Scholar
  4. Bangsberg, D. R., Sharon, P., Charlebois, E. D., Clark, R. A., Roberston, M., et al. (2001). Non-adherence to highly active antiretroviral therapy (HAART) predicts progression to AIDS. AIDS, 15, 1181–1183. doi: 10.1097/00002030-200106150-00015 CrossRefPubMedGoogle Scholar
  5. Bastawrous, A., & Armstrong, M. J. (2013). Mobile health use in low- and high-income countries: An overview of the peer-reviewed literature. Journal of the Royal Society of Medicine, 106, 130–142. doi: 10.1177/014107681247262 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Becker, B. J., et al. (2000). Multivariate meta-analysis. San Diego, CA: Academic Press.CrossRefGoogle Scholar
  7. Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50(4), 1088–1101.CrossRefPubMedGoogle Scholar
  8. Berg, K. M., Wilson, I. B., Li, X., & Arnsten, J. H. (2012). Comparison of antiretroviral adherence questions. AIDS and Behavior, 16, 461–468.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brinkel, J., Krämer, A., Krumkamp, R., May, J., & Fobil, J. (2014). Mobile phone-based mHealth approaches for public health surveillance in sub-Saharan Africa: A systematic review. International Journal of Environmental Resources and Public Health, 11, 11559–11582. doi: 10.3390/ijerph111111559 CrossRefGoogle Scholar
  10. Buscher, A., Hartman, C., Kallen, M. A., & Giordano, T. P. (2011). Validity of self-report measures in assessing antiretroviral adherence of newly diagnosed, HAART-naive. HIV patients. HIV Clinical Trials, 12, 244–254. doi: 10.1310/hct1205-244 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Card, N. (2012). Applied meta-analysis for social science research. New York: The Guilford Press.Google Scholar
  12. Chan, K. C., Wong, K. H., & Lee, S. S. (2006). Universal decline in mortality in patients with advanced HIV-1 disease in various demographic subpopulations after the introduction of HAART in Hong Kong, from 1993 to 2002. HIV Medicine, 7, 186–192.CrossRefPubMedGoogle Scholar
  13. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.CrossRefPubMedGoogle Scholar
  14. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  15. Cooper, H. M., & Hedges, L. V. (Eds.). (1994). The handbook of research synthesis and meta-analysis (2nd ed.). New York, NY: Russell Sage.Google Scholar
  16. Do, H. M., Dunne, M. P., Kato, M., Pham, C. V., & Nguyen, K. V. (2013). Factors associated with suboptimal adherence to antiretroviral therapy in Viet Nam: A cross-sectional study using audio computer-assisted self-interview (ACASI). BMC Infectious Diseases, 13, 154.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Farmer, K. C. (1999). Methods for measuring and monitoring medication regimen adherence in clinical trials and clinical practice. Clinical Therapeutics, 21, 1074–1090.CrossRefPubMedGoogle Scholar
  18. Feldman, B. J., Fredericksen, R. J., Crane, P. K., Safren, S. A., Mugavero, M. J., Willig, J. H., et al. (2013). Evaluation of the single-itme self-rating adherence scale for use in routine clinical care of people living with HIV. AIDS and Behavior, 17, 307–318. doi: 10.1007/s10461-012-0326-7 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ferreira, J. L., Rodrigues, R., Lanca, A. M., Correia de Almeida, V., Rocha, S. Q., Ragazzo, T. G., et al. (2013). Transmitted drug resistance among people living with HIV/AIDS at major cities of Sao Paulo State, Brazil. Advances in Virology, published online. Retrieved from doi: 10.1155/2013/878237
  20. Field, A. P. (2001). Meta-analysis of correlation coefficients: A Monte Carlo comparison of fixed and random effects methods. Psychological Methods, 6, 161–180.CrossRefPubMedGoogle Scholar
  21. Field, A. P. (2005). Is the meta-analysis of correlation coefficients accurate when population correlations vary? Psychological Methods, 10, 444–467.CrossRefPubMedGoogle Scholar
  22. Friedman, S. R., de Jong, W., Rossi, D., Touze, G., Rockwell, R., Des Jarlais, D. C., & Elovich, R. (2007). Harm reduction theory: Users culture, micro-social indigenous harm reduction, and the self-organization and outside-organizing of users’ groups. International Journal of Drug Policy, 18(2), 107–117.CrossRefPubMedGoogle Scholar
  23. Furberg, R. D., Uhrig, J. D., Bann, C. M., Lewis, M. A., Harris, J. L., Williams, P., et al. (2012). Technical implementation of a multi-component, text message-based intervention for persons living with HIV. Journal of Medical Internet Research Protocols, 16(1), e17. doi: 10.2196/resprot.2017 CrossRefGoogle Scholar
  24. Gill, C. J., Sabin, L. L., Hamer, D. H., Keyi, X., Jianbo, Z., Li, T., et al. (2010). Importance of dose timing to achieving undetectable viral loads. AIDS and Behavior, 14, 785–793. doi: 10.1007/s10461-009-9555-9 CrossRefPubMedGoogle Scholar
  25. Gionatti, N., Galli, L., Bocchiola, B., Cahua, T. R., Panzini, P., Zandona, D., et al. (2013). Number of daily pills, dosing schedule, self-reported adherence and health status in 2010: A large cross-sectional study of HIV-infected patients on antiretroviral therapy. HIV Medicine, 14, 153–160.CrossRefGoogle Scholar
  26. Giordano, T. P., Guzman, D., Clark, R., Charlebois, E. D., & Bangsberg, D. R. (2004). Measuring adherence to antiretroviral therapy in a diverse population using a visual analogue scale. HIV Clinical Trials, 5, 74–79.CrossRefPubMedGoogle Scholar
  27. Gleser, L. J., & Olkin, I. (1994). Stochastically dependent effect sizes. The Handbook of Research Synthesis and Meta-Analysis (2nd ed., pp. 357–377). New York: Russell Sage.Google Scholar
  28. Graham, S. M., Jalalian-Lechak, Z., Shafi, J., Chohan, V., Deya, R. W., Jaoko, W., et al. (2012). Antiretroviral treatment interruptions predict female genital shedding of genotypically resistant HIV-1 RNA. Journal of Acquired Immune Deficiency Syndrome, 60, 511–518.CrossRefGoogle Scholar
  29. Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. San Diego, CA: Academic Press.Google Scholar
  30. Herbst, A. J., Cooke, G. S., Barnighausen, T., Kany Kany, A., Tanser, F., & Newell, M. L. (2009). Adult mortality and antiretroviral treatment roll-out in rural KwaZulu-Natal, South Africa. Bulletin of the World Health Organization, 87, 754–762.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hess, L. M., Raebel, M. A., Conner, D. A., & Malone, D. C. (2006). Measurement of adherence in pharmacy administrative databases: A proposal for standard definitions and preferred measures. Annals of Pharmacotherapy, 40, 1280–1288.CrossRefPubMedGoogle Scholar
  32. Higgins, J. P., & Green, S. (Eds.) (2011). Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from
  33. Higgins, J. P. T., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analysis. British Medical Journal, 327, 557–560.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hong, S. Y., Jerger, L., Jonas, A., Badi, A., Cohen, S., Nachega, J. B., et al. (2013). Medication possession ratio associated with short-term virologic response in individuals initiating antiretroviral therapy in Namibia. PLoS One, 8, e56307. doi: 10.1371/journal.pone.0056307 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Huedo-Medina, T. B., Sánchez-Meca, J., Marın-Martınez, F., & Botella, J. (2006). Assessing heterogeneity in meta-analysis: Q statistic or I 2 index? Psychological Methods, 11, 193–206.CrossRefPubMedGoogle Scholar
  36. Hugen, P. W., Langebeek, M., Burger, D. M., Zomer, B., van Leusen, R., Schuurman, R., et al. (2002). Assessment of adherence to HIV protease inhibitors: Comparison and combination of various methods, including MEMS (electronic monitoring), patient and nurse report, and therapeutic drug monitoring. Journal of Acquired Immune Deficiency Symdromes, 30, 324–334.CrossRefGoogle Scholar
  37. Johnson, B. T., & Huedo-Medina, T. B. (2011). Depicting estimates using the intercept in meta-regression models: The moving constant technique. Research Synthesis Methods, 2, 204–220.CrossRefPubMedGoogle Scholar
  38. Johnson, B. T., Low, R. E., & MacDonald, H. V. (2014). Panning for the gold in health research: Incorporating studies’ methodological quality in meta-analysis. Psychology and Health,. doi: 10.1080/08870446.2014.953533 PubMedCentralGoogle Scholar
  39. Kagee, A., & Nell, A. (2012). Assessing the association between self-report items for HIV pill adherence and biological measures. AIDS Care, 24(11), 1448–1452. doi: 10.1080/09540121.2012.687816 CrossRefPubMedGoogle Scholar
  40. Kalichman, S. C., Amaral, C. M., Swetzes, C., Jones, M., Macy, R., Kalichman, M. O., et al. (2009). A simple single-item rating scale to measure medication adherence: Further evidence for convergent validity. Journal of the International Association of Physicians in AIDS Care, 8, 367–374. doi: 10.1177/1545109709352884 CrossRefPubMedGoogle Scholar
  41. Kerr, S. J., Avihingsanon, A., Putcharoen, O., Chetchotisakd, P., Layton, M., Ubolyam, S., et al. (2012). Assessing adherence in thai patients taking combination antiretroviral therapy. International Journal of STD and AIDS, 23, 160–165. doi: 10.1258/ijsa.2009.009152 CrossRefPubMedGoogle Scholar
  42. Krakower, D. S., Jain, S., & Mayer, K. H. (2015). Antiretrovirals for primary HIV prevention: The current status of pre- and post-exposure prophylaxis. Current HIV/AIDS Reports, 12(1), 127–138. doi: 10.1007/s11904-014-0253-5 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Liu, H., Golin, C. E., Miller, L. G., Hays, R. D., Beck, C. K., Sanandaji, S., et al. (2001). A comparison study of multiple measures of adherence to HIV protease inhibitors. Annals of Internal Medicine, 134, 968–977.CrossRefPubMedGoogle Scholar
  44. Maldonado-Martinez, G., Hunter-Mellado, R. F., Fernandez-Santos, D., & Rios-Olivares, E. (2016). Persistent HIV viremia: Description of a cohort of HIV infected individuals with ART failure in Puerto Rico. International Journal of Environmental Research and Public Health, 13, 50. doi: 10.3390/ijerph13010050 CrossRefGoogle Scholar
  45. Maneesriwongul, W. L., Tulathong, S., Fennie, K. P., & Williams, A. B. (2006). Adherence to antiretroviral medication among HIV-positive patients in Thailand. Journal of Acquired Immune Deficiency Syndromes, 43, S119–S122. doi: 10.1097/01.qai.0000248346.79888.78 CrossRefPubMedGoogle Scholar
  46. Mbuagbaw, L., Thabane, L., Ongolo-Zogo, P., Lester, R. T., Mills, E. J., Smieja, M., et al. (2012). The cameroon mobile phone SMS (CAMPS) trial: A randomized trial of text messaging versus usual care for adherence to antiretroviral therapy. PLoS One, 7, e46909. doi: 10.1371/journal.pone.0046909 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med: Available: e1000097. doi:  10.1371/journal.pmed1000097. Accessed 5 June 2013.
  48. Muessig, K., Nekkanti, M., Bauermeister, J., Bull, S., & Hightow-Weidman, L. (2015). A systematic review of recent smartphone, Internet and Web 2.0 interventions to address the HIV continuum of care. Current HIV/AIDS Reports, 12, 173. doi: 10.1007/s11904-014-0239-3 CrossRefPubMedPubMedCentralGoogle Scholar
  49. National Institute for Health and Care Excellence. (2012). Appendix G Quality appraisal checklist: Quantitative studies reporting correlations and associations. In Methods for the development of NICE public health guidance, 3rd edn.
  50. Oyugi, J. H., Byakika-Tusiime, J., Charlebois, E. D., Kityo, C., Mugerwa, R., Mugyenyi, P., et al. (2004). Multiple validated measures of adherence indicate high levels of adherence to generic HIV antiretroviral therapy in a resource-limited setting. Journal of Acquired Immune Deficiency Syndromes, 36, 1100–1102.CrossRefPubMedGoogle Scholar
  51. Palella, F. J., Jr., Delaney, K. M., Moorman, A. C., Loveless, M. O., Fuhrer, J., Satten, G., et al. (1998). Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. New England Journal of Medicine, 338, 853–860.CrossRefPubMedGoogle Scholar
  52. Park-Wyllie, L. Y., Kam, D., & Bayoumi, A. M. (2009). The adherence support gap: The ‘ideal’ versus ‘reality’ of antiretroviral adherence support provided by HIV health providers in clinical practice. Annals of Pharmacotherapy, 43, 1036–1044. doi: 10.1345/aph.1l663 CrossRefPubMedGoogle Scholar
  53. Pellowski, J. A., Kalichman, S. C., & Finitsis, D. J. (2015). Reliability and validity of a single item rating scale to monitor medication adherence for people living with HIV and lower health literacy. HIV Clinical Trials, 16, 1–9.CrossRefPubMedGoogle Scholar
  54. Pellowski, J. A., Kalichman, S. C., Matthews, K. A., & Adler, N. (2013). A pandemic of the poor: Social disadvantage and the U.S. HIV epidemic. American Psychologist, 68, 197–209. doi: 10.1037/a0032694 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Peltzer, K., Friend-du Preez, N., Ramlagan, S., & Anderson, J. (2010). Antiretroviral treatment adherence among HIV patients in KwaZulu-Natal, South Africa. BMC Public Health. Retrieved online from
  56. IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.Google Scholar
  57. Schmidt, F. L., Oh, I. S., & Hayes, T. L. (2009). Fixed- versus random-effects models in meta-analysis: Model properties and an empirical comparison of differences in results. British Journal of Mathematical and Statistical Psychology, 62, 97–128.CrossRefPubMedGoogle Scholar
  58. Segeral, O., Madec, Y., Ban, B., Ouk, V., Hak, C. R., Le Tiec, C., et al. (2010). Simplified assessment of antiretroviral adherence and prediction of virological efficacy in HIV-infected patients in Cambodia. AIDS Research and Treatment, 2010, 142076. doi: 10.1155/2010/142076 CrossRefPubMedGoogle Scholar
  59. Sherr, L., Lampe, F., Clucas, C., Johnson, M., Fisher, M., Leake Date, H., et al. (2010). Self-reported non-adherence to ART and virological outcome in a multiclinic UK study. AIDS Care, 22, 939–945.CrossRefPubMedGoogle Scholar
  60. Shi, L., Liu, J., Koleva, Y., Fonseca, V., Kalsekar, A., & Pawaskar, M. (2010). Concordance of adherence measurement using self-reported adherence questionnaires and medication monitoring devices. Pharmacoeconomics, 28, 1097–1107. doi: 10.2165/11537400-000000000-00000 CrossRefPubMedGoogle Scholar
  61. Sinha, S., Ahmad, H., Shekhar, R. C., Kumar, N., Dar, L., Samantaray, J. C., et al. (2012). Prevalence of HIV drug resistance mutations in HIV type 1 isolates in antiretroviral therapy naive population from northern India. AIDS Research and Treatment, 2012, 905823. doi: 10.1155/2012/905823 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Torrance, G. W., Feeny, D., & Furlong, W. (2001). Visual analog scales: Do they have a role in the measurement of preferences for health states? Medical Decision Making: An International Journal of the Society for Medical Decision Making., 21, 329–334.CrossRefGoogle Scholar
  63. Treiblmaier, H., & Filzmoser P. (2009). Benefits from using continuous rating scales in online survey research. In Proceedings of the Institut f. Statistik u. Wahrscheinlichkeitstheorie, Forschungsbericht SM-2009-4, November 2009.Google Scholar
  64. Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48.
  65. Walsh, J. C., Mandalia, S., & Gazzard, B. G. (2002). Responses to a 1 month self-report on adherence to antiretroviral therapy are consistent with electronic data and virological treatment outcome. AIDS, 16, 269–277.CrossRefPubMedGoogle Scholar
  66. Wang, H., He, G., Li, X., Yang, A., Chen, X., Fennie, K. P., et al. (2008). Self-reported adherence to antiretroviral treatment among HIV-infected people in Central China. AIDS Patient Care and STDs, 22, 71–80. doi: 10.1089/apc.2007.0047 CrossRefPubMedGoogle Scholar
  67. Wewers, M. E., & Lowe, N. K. (1990). A critical review of visual analogue scales in the measurement of clinical phenomena. Research in Nursing and Health, 13, 227–236.CrossRefPubMedGoogle Scholar
  68. Wilson, D. B. (2002). Meta-analysis macros for SAS, SPSS, and Stata [Computer Software]. Available: Accessed 7 April 2012.
  69. Wilson, I. B., Carter, A. E., & Berg, K. M. (2009). Improving the self-report of HIV antiretroviral medication adherence: Is the glass half full or half empty? Current HIV/AIDS Reports, 6, 177–186.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Wilson, I. B., Fowler, F. J., Jr., Cosenza, C. A., Michaud, J., Bentkover, J., Rana, A., et al. (2014). Cognitive and field testing of a new set of medication adherence self-report items for HIV care. AIDS and Behavior, 18, 2349–2358. doi: 10.1007/s10461-013-0610-1 CrossRefPubMedGoogle Scholar
  71. World Health Organization. (2006). Working together for health: The world health report. Geneva: WHO Press.Google Scholar
  72. World Health Organization. (2012). Guidance on pre-exposure oral prophylaxis (PrEP) for serodiscordant couples, men and transgender women who have sex with men at high risk of HIV: Recommendations for use in the context of demonstration projects. Geneva, Switzerland: WHO Document Production Services.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Center for Health, Intervention, and Prevention, Department of PsychologyUniversity of ConnecticutStorrsUSA

Personalised recommendations