Journal of Behavioral Medicine

, Volume 34, Issue 2, pp 128–138 | Cite as

Neurocognitive impairment and medication adherence in HIV patients with and without cocaine dependence

  • Christina S. Meade
  • Nina A. Conn
  • Linda M. Skalski
  • Steven A. Safren


Cocaine abuse among HIV patients is associated with faster disease progression and mortality. This study examined the relationship between neurocognitive functioning and medication adherence in HIV patients with (n = 25) and without (n = 39) current cocaine dependence. Active users had greater neurocognitive impairment (mean T-score = 35.16 vs. 40.97, p < .05) and worse medication adherence (mean z-score = −0.44 vs. 0.27, p < .001). In a multiple regression model, neurocognitive functioning (β = .33, p < .01) and cocaine dependence (β = −.36, p < .01) were predictive of poorer adherence. There was a significant indirect effect of cocaine dependence on medication adherence through neurocognitive impairment (estimate = −0.15, p < .05), suggesting that neurocognitive impairment partially mediated the relationship between cocaine dependence and poorer adherence. These results confirm that cocaine users are at high risk for poor HIV outcomes and underscore the importance of treating both neurocognitive impairment and cocaine dependence among HIV patients.


HIV/AIDS Cocaine dependence Antiretroviral therapy Medication adherence Neurocognitive functioning 



This study was supported by grants from amfAR, The Foundation for AIDS Research (106884-42-RFBR), the National Institute on Drug Abuse (T32-DA01536), the Harvard University Center for AIDS Research (P30-AI60354), and the Duke University Center for AIDS Research (P30-AI064519). The authors thank Drs. Scott Lukas and Kathleen Sikkema for their mentorship and Mary Key, Jessica Eldridge, Ross MacLean, and Tiffany Chu for their assistance collecting and entering data.


  1. Aharonovich, E., Hasin, D. S., Brooks, A. C., Liu, X., Bisaga, A., & Nunes, E. V. (2006). Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug and Alcohol Dependence, 81(3), 313–322.PubMedCrossRefGoogle Scholar
  2. Aharonovich, E., Nunes, E., & Hasin, D. (2003). Cognitive impairment, retention and abstinence among cocaine abusers in cognitive-behavioral treatment. Drug and Alcohol Dependence, 71(2), 207–211.PubMedCrossRefGoogle Scholar
  3. Albert, S. M., Flater, S. R., Clouse, R., Todak, G., Stern, Y., & Marder, K. (2003). Medication management skill in HIV: I. Evidence for adaptation of medication management strategies in people with cognitive impairment. II. Evidence for a pervasive lay model of medication efficacy. AIDS and Behavior, 7(3), 329–338.PubMedCrossRefGoogle Scholar
  4. Ammassari, A., Antinori, A., Aloisi, M. S., Trotta, M. P., Murri, R., Bartoli, L., et al. (2004). Depressive symptoms, neurocognitive impairment, and adherence to highly active antiretroviral therapy among HIV-infected persons. Psychosomatics, 45(5), 394–402.PubMedCrossRefGoogle Scholar
  5. Anthony, I. C., & Bell, J. E. (2008). The neuropathology of HIV/AIDS. International Review of Psychiatry, 20(1), 15–24.PubMedCrossRefGoogle Scholar
  6. Antinori, A., Arendt, G., Becker, J. T., Brew, B. J., Byrd, D. A., Cherner, M., et al. (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 69(18), 1789–1799.PubMedCrossRefGoogle Scholar
  7. Applebaum, A. J., Otto, M. W., Richardson, M. A., & Safren, S. A. (2009). Contributors to neuropsychological impairment in HIV-infected and HIV-uninfected opiate-dependent patients. Journal of Clinical and Experimental Neuropsychology, Epub ahead of print (Nov 4), 1–11.Google Scholar
  8. Applebaum, A. J., Reilly, L. C., Gonzalez, J. S., Richardson, M. A., Leveroni, C. L., & Safren, S. A. (2009b). The impact of neuropsychological functioning on adherence to HAART in HIV-infected substance abuse patients. AIDS Patient Care and STDS, 23(6), 455–462.PubMedCrossRefGoogle Scholar
  9. Ardila, A., Rosselli, M., & Strumwasser, S. (1991). Neuropsychological deficits in chronic cocaine abusers. International Journal of Neuroscience, 57(1–2), 73–79.PubMedCrossRefGoogle Scholar
  10. Arnsten, J. H., Demas, P. A., Grant, R. W., Gourevitch, M. N., Farzadegran, H., Howard, A. A., et al. (2002). Impact of active drug use on antiretroviral therapy adherence and viral suppression in HIV-infected drug users. Journal of General Internal Medicine, 17(5), 377–381.PubMedGoogle Scholar
  11. Avants, S. K., Margolin, A., Warburton, L. A., Hawkins, K. A., & Shi, J. (2001). Predictors of nonadherence to HIV-related medication regimens during methadone stabilization. American Journal of Addictions, 10(1), 36–78.Google Scholar
  12. Bangsberg, D. R. (2006). Less than 95% adherence to nonnucleoside reverse-transcriptase inhibitor therapy can lead to viral suppression. Clinical Infectious Diseases, 43(7), 939941.CrossRefGoogle Scholar
  13. Barclay, T. R., Hinkin, C. H., Castellon, S. A., Mason, K. I., Reinhard, M. J., Marion, S. D., et al. (2007). Age-associated predictors of medication adherence in HIV-positive adults: Health beliefs, self-efficacy, and neurocognitive status. Health Psychology, 26(1), 40–49.PubMedCrossRefGoogle Scholar
  14. Baron, R. M., & Kenny, D. A. (1996). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.CrossRefGoogle Scholar
  15. Baum, M. K., Rafie, C., Lai, S., Sales, S., Page, B., & Campa, A. (2009). Crack-cocaine use accelerates HIV disease progression in a cohort of HIV-positive drug users. Journal of Acquired Immune Deficiency Syndrome, 50(1), 93–99.CrossRefGoogle Scholar
  16. Beatty, W. W., Katzung, V. M., Moreland, V. J., & Nixon, S. J. (1995). Neuropsychological performance of recently abstinent alcoholics and cocaine abusers. Drug and Alcohol Dependence, 37(3), 247–253.PubMedCrossRefGoogle Scholar
  17. Benedict, R. H., Mezhir, J. J., Walsh, K., & Hewitt, R. G. (2000). Impact of human immunodeficiency virus type-1-associated cognitive dysfunction on activities of daily living and quality of life. Archives of Clinical Neuropsychology, 15(6), 535–544.PubMedGoogle Scholar
  18. Benton, A., Hamsher, K., & Sivan, A. (1983). Multilingual aphasia examination (3rd ed.). Iowa City, IA: AJA Associates.Google Scholar
  19. Bing, E. G., Burnam, M. A., Longshore, D., Fleishman, J. A., Sherbourne, C. D., London, A. S., et al. (2001). Psychiatric disorders and drug use among human immunodeficiency virus-infected adults in the United States. Archives of General Psychiatry, 58(8), 721–728.PubMedCrossRefGoogle Scholar
  20. Bolla, K. I., Rothman, R., & Cadet, J. L. (1999). Dose-related neurobehavioral effects of chronic cocaine use. Journal of Neuropsychiatry and Clinical Neurosciences, 11(3), 361–369.PubMedGoogle Scholar
  21. Brandt, J., & Benedict, R. H. B. (2001). Hopkins verbal learning test–Revised professional manual. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
  22. Brew, B. J., & Gonzalez-Scarano, F. (2007). HIV-associated dementia: An inconvenient truth. Neurology, 68(5), 324–325.PubMedCrossRefGoogle Scholar
  23. Brew, B. J., Halman, M., Catalan, J., Sacktor, N., Price, R. W., Brown, S., et al. (2007). Factors in AIDS dementia complex trial designs: Results and lessons from the abacavir trial. PLoS Clinical Trials, 2(3), 13.CrossRefGoogle Scholar
  24. Chander, G., Josephs, J., Fleishman, J. A., Korthuis, P. T., Gaist, P., Hellinger, J., et al. (2008). Alcohol use among HIV-infected persons in care: Results of a multi-site survey. HIV Medicine, 9(4), 196–202.PubMedCrossRefGoogle Scholar
  25. Chang, L., Wang, G. J., Volkow, N. D., Ernst, T., Telang, F., Logan, J., et al. (2008). Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. Neuroimage, 42(2), 869–878.PubMedCrossRefGoogle Scholar
  26. Chesney, M. A., Ickovics, J. R., Chambers, D. B., Gifford, A. L., Neidig, J., Zwickl, B., et al. (2000). Self-reported adherence to antiretroviral medications among participants in HIV clinical trials: The AACTG adherence instruments. AIDS Care, 12(3), 255–266.PubMedCrossRefGoogle Scholar
  27. Clarke, S., Delamere, S., McCullough, L., Hopkins, S., Bergin, C., & Mulcahy, F. (2003). Assessing limiting factors to the acceptance of antiretroviral therapy in a large cohort of injecting drug users. HIV Medicine, 4(1), 33–37.PubMedCrossRefGoogle Scholar
  28. Clifford, D. B., McArthur, J. C., Schifitto, G., Kieburtz, K., McDermott, M. P., Letendre, S., et al. (2002). A randomized clinical trial of CPI-1189 for HIV-associated cognitive-motor impairment. Neurology, 59(10), 1568–1573.PubMedGoogle Scholar
  29. Cook, J. A., Grey, D. D., Burke-Miller, J. K., Cohen, M. H., Vlahov, D., Kapadia, F., et al. (2007). Illicit drug use, depression and their association with highly active antiretroviral therapy in HIV-positive women. Drug and Alcohol Dependence, 89(1), 74–81.PubMedCrossRefGoogle Scholar
  30. Dawes, S., Suarez, P., Casey, C. Y., Cherner, M., Marcotte, T. D., Letendre, S., et al. (2008). Variable patterns of neuropsychological performance in HIV-1 infection. Journal of Experimental and Clinical Neuropsychology, 30(6), 613–626.CrossRefGoogle Scholar
  31. Durvasula, R. S., Myers, H. F., Satz, P., Miller, E. N., Morgenstern, H., Richardson, M. A., et al. (2000). HIV-1, cocaine, and neuropsychological performance in African American men. Journal of the International Neuropsychological Society, 6(3), 322–335.PubMedCrossRefGoogle Scholar
  32. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Boca Raton, FL: Chapman & Hall.Google Scholar
  33. Fals-Stewart, W., & Lucente, S. (1994). Effect of neurocognitive status and personality functioning on length of stay in residential substance abuse treatment: An integrative study. Psychology of Addictive Behaviors, 8(3), 179–190.CrossRefGoogle Scholar
  34. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1996). Structured clinical interview for DSM-IV axis I disorders, research version, Patient/Non-patient Edition, (SCID-I/P) or (SCID-I/NP). New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
  35. Fletcher, C. V., Testa, M. A., Brundage, R. C., Chesney, M. A., Haubrich, R., Acosta, E. P., et al. (2005). Four measures of antiretroviral medication adherence and virologic response in AIDS clinical trials group study 359. Journal of Acquired Immune Deficiency Syndrome, 40(3), 301–306.CrossRefGoogle Scholar
  36. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-Mental State”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.PubMedCrossRefGoogle Scholar
  37. Fox, H. C., Jackson, E. D., & Sinha, R. (2009). Elevated cortisol and learning and memory deficits in cocaine dependent individuals: Relationship to relapse outcomes. Psychoneuroendocrinology, 34(8), 1198–1207.PubMedCrossRefGoogle Scholar
  38. Giordano, T. P., Guzman, D., Clark, R., Charlebois, E. D., & Bangsberg, D. R. (2004). Measuring adherence to antiretroviral therapy in a diverse population using a visual analogue scale. HIV Clinical Trials, 5(2), 74–79.PubMedCrossRefGoogle Scholar
  39. Heaton, R. K., Grant, I., Butters, N., White, D. A., Kirson, D., Atkinson, J. H., et al. (1995). The HNRC 500-neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. Journal of the International Neuropsychological Society, 1(3), 231–251.PubMedCrossRefGoogle Scholar
  40. Heaton, R. K., Marcotte, T. D., Mindt, M. R., Sadek, J., Moore, D. J., Bentley, H., et al. (2004a). The impact of HIV-associated neuropsychological impairment on everyday functioning. Journal of the International Neuropsychological Society, 10(3), 317–331.PubMedCrossRefGoogle Scholar
  41. Heaton, R. K., Miller, S. W., Taylor, M. J., & Grant, I. (2004b). Revised comprehensive norms for an expanded halstead-reitan battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
  42. Hinkin, C. H., Barclay, T. R., Castellon, S. A., Levine, A. J., Durvasula, R. S., Marion, S. D., et al. (2007). Drug use and medication adherence among HIV-1 infected individuals. AIDS and Behavior, 11(2), 185–194.PubMedCrossRefGoogle Scholar
  43. Hinkin, C. H., Castellon, S. A., Durvasula, R. S., Hardy, D. J., Lam, M. N., Mason, K. I., et al. (2002). Medication adherence among HIV+ adults: Effects of cognitive dysfunction and regimen complexity. Neurology, 59(12), 1944–1950.PubMedGoogle Scholar
  44. Hinkin, C. H., Hardy, D. J., Mason, K. I., Castellon, S. A., Durvasula, R. S., Lam, M. N., et al. (2004). Medication adherence in HIV-infected adults: Effect of patient age, cognitive status, and substance abuse. AIDS, 18(Supp 1), 19–25.Google Scholar
  45. Hoff, A. L., Riordan, H., Morris, L., Cestaro, V., Wieneke, M., Alpert, R., et al. (1996). Effects of crack cocaine on neurocognitive function. Psychiatry Research, 60(2–3), 167–176.PubMedCrossRefGoogle Scholar
  46. Hult, B., Chana, G., Masliah, E., & Everall, I. (2008). Neurobiology of HIV. International Review of Psychiatry, 20(1), 3–13.PubMedCrossRefGoogle Scholar
  47. Kalichman, S. C., Amaral, C. M., Swetzes, C., Jones, M., Macy, R., Kalichman, M. O., et al. (2009). A simple single-item rating scale to measure medication adherence: Further evidence for convergent validity. Journal of the International Association of Physicians in AIDS Care, 8(6), 367–374.PubMedCrossRefGoogle Scholar
  48. Korthuis, P. T., Zephyrin, L. C., Fleishman, J. A., Saha, S., Josephs, J. S., McGrath, M. M., et al. (2008). Health-related quality of life in HIV-infected patients: The role of substance use. AIDS Patient Care and STDS, 22(11), 859–867.PubMedCrossRefGoogle Scholar
  49. Kuo, W. H., Wilson, T. E., Weber, K. M., Madhava, V., Richardson, J., Delapenha, R., et al. (2004). Initiation of regular marijuana use among a cohort of women infected with or at risk for HIV in the Women’s Interagency HIV Study (WIHS). AIDS Patient Care and STDS, 18(12), 702–713.PubMedCrossRefGoogle Scholar
  50. Levine, A. J., Hardy, D. J., Miller, E., Castellon, S. A., Longshore, D., & Hinkin, C. H. (2004). The effect of recent stimulant use on sustained attention in HIV-infected adults. Journal of Clinical and Experimental Neuropsychology, 28(1), 29–42.CrossRefGoogle Scholar
  51. Levine, A. J., Hinkin, C. H., Castellon, S. A., Mason, K. I., Lam, M. N., Perkins, A., et al. (2005). Variations in patterns of highly active antiretroviral therapy (HAART) adherence. AIDS and Behavior, 9(3), 355–362.PubMedCrossRefGoogle Scholar
  52. Lezac, M. D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.Google Scholar
  53. Liu, H., Miller, L. G., Golin, C. E., Wu, T., Wenger, N. S., & Kaplan, A. H. (2006). Repeated measures longitudinal analyses of HIV virologic response as a function of percent adherence, dose timing, genotypic sensitivity, and other factors. Journal of Acquired Immune Deficiency Syndrome, 41(3), 315–322.CrossRefGoogle Scholar
  54. London, E. D., Bonson, K. R., Ernst, M., & Grant, S. (1999). Brain imaging studies of cocaine abuse: Implications for medication development. Critical Reviews in Neurobiology, 13(3), 227–242.PubMedGoogle Scholar
  55. Lovejoy, T. I., & Suhr, J. A. (2009). The relationship between neuropsychological functioning and HAART adherence in HIV-positive adults: A systematic review. Journal of Behav Medicine, 32(5), 389–405.CrossRefGoogle Scholar
  56. Lu, M., Safren, S. A., Skolnik, P. R., Rogers, W. H., Coady, W., Hardy, H., et al. (2008). Optimal recall period and response task for self-reported HIV medication adherence. AIDS and Behavior, 12(1), 86–94.PubMedCrossRefGoogle Scholar
  57. Mackinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39(1), 99.PubMedCrossRefGoogle Scholar
  58. McLellan, A. T., Kushner, H., Metzger, D., Peters, R., Smith, I., Grissom, G., et al. (1992). The fifth edition of the addiction severity index. Journal of Substance Abuse Treatment, 9(3), 199–213.PubMedCrossRefGoogle Scholar
  59. Medina, K. L., Shear, P. K., & Schafer, J. (2006). Memory functioning in polysubstance dependent women. Drug and Alcohol Dependence, 84(3), 248–255.PubMedCrossRefGoogle Scholar
  60. Meyers, J. E., & Meyers, K. R. (1995). Rey complex figure test and recognition trial. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
  61. Mills, E. J., Nachega, J. B., Buchan, I., Orbinski, J., Attaran, A., Singh, S., et al. (2006). Adherence to antiretroviral therapy in sub-Saharan African and North American. JAMA, 296(6), 679–690.PubMedCrossRefGoogle Scholar
  62. Monterosso, J. R., Ainslie, G., Xu, J., Cordova, X., Domier, C. P., & London, E. D. (2007). Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task. Human Brain Mapping, 28(5), 383–393.PubMedCrossRefGoogle Scholar
  63. Moore, D. J., Masliah, E., Rippeth, J. D., Gonzalez, R., Carey, C. L., Cherner, M., et al. (2006). Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS, 20(6), 879–887.PubMedCrossRefGoogle Scholar
  64. Palepu, A., Horton, N. J., Tibbetts, N., Meli, S., & Samet, J. H. (2004). Uptake and adherence to highly active antiretroviral therapy among HIV-infected people with alcohol and other substance use problems: The impact of substance abuse treatment. Addiction, 99(3), 361–368.PubMedCrossRefGoogle Scholar
  65. Paulus, M. P., Hozack, N. E., Zauscher, B. E., Frank, L., Brown, G. G., Braff, D. L., et al. (2002). Behavioral and functional neuroimaging evidence for prefrontal dysfunction in methamphetamine-dependent subjects. Neuropsychopharmacology, 26(1), 53–63.PubMedCrossRefGoogle Scholar
  66. Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavioral Research Methods, Instruments, and Computers, 36(4), 717–731.CrossRefGoogle Scholar
  67. Rabkin, J. G., McElhiney, M., Ferrando, S. J., Van Gorp, W., & Lin, S. H. (2004). Predictors of employment of men with HIV/AIDS: A longitudinal study. Psychosomatic Medicine, 66(1), 72–78.PubMedCrossRefGoogle Scholar
  68. Reback, C. J., Larkins, S., & Shoptaw, S. (2003). Methamphetamine abuse as a barrier to HIV medication adherence among gay and bisexual men. AIDS Care, 15(6), 775–785.PubMedCrossRefGoogle Scholar
  69. Reger, M., Welsh, R., Razani, J., Martin, D. J., & Boone, K. B. (2002). A meta-analysis of the neuropsychological sequelae of HIV infection. Journal of the International Neuropsychological Society, 8(3), 410–424.PubMedCrossRefGoogle Scholar
  70. Reynolds, N. R., Sun, J., Nagaraja, H. N., Gifford, A. L., Wu, A. W., & Chesney, M. A. (2007). Optimizing measurement of self-reported adherence with the ACTG Adherence Questionnaire: A cross-protocol analysis. Journal of Acquired Immune Deficiency Syndromes, 46(4), 402–409.PubMedCrossRefGoogle Scholar
  71. Rippeth, J. D., Heaton, R. K., Carey, C. L., Marcotte, T. D., Moore, D. J., Gonzalez, R., et al. (2004). Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. Journal of the International Neuropsychological Society, 10(1), 1–14.PubMedCrossRefGoogle Scholar
  72. Rosselli, M., Ardila, A., Lubomski, M., Murray, S., & King, K. (2001). Personality profile and neuropsychological test performance in chronic cocaine-abusers. International Journal of Neuroscience, 110(1–2), 55–72.PubMedCrossRefGoogle Scholar
  73. Roux, P., Carrieri, M. P., Villes, V., Dellamonica, P., Poizot-Martin, I., Ravaux, I., et al. (2008). The impact of methadone or buprenorphine treatment and ongoing injection on highly active antiretroviral therapy (HAART) adherence: Evidence from the MANIF2000 cohort study. Addiction, 103(11), 1828–1836.PubMedCrossRefGoogle Scholar
  74. Sacktor, N. (2002). The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. Journal of Neurovirology, 8(Suppl 2), 115–121.PubMedCrossRefGoogle Scholar
  75. Schifitto, G., Navia, B. A., Yiannoutsos, C. T., Marra, C. M., Chang, L., Ernst, T., et al. (2007). Memantine and HIV-associated cognitive impairment: A neuropsychological and proton magnetic resonance spectroscopy study. AIDS, 21(14), 1877–1886.PubMedCrossRefGoogle Scholar
  76. Schrimsher, G., & Parker, J. (2008). Changes in cognitive function during substance use disorder treatment. Journal of Psychopathology and Behavioral Assessment, 30(2), 146–153.CrossRefGoogle Scholar
  77. Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., et al. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl 30), 22–33.PubMedGoogle Scholar
  78. Shuter, J., Sarlo, J. A., Kanmaz, T. J., Rode, R. A., & Zingman, B. S. (2007). HIV-infected patients receiving lopinavir/ritonavir-based antiretroviral therapy achieve high rates of virologic suppression despite adherence rates less than 95%. Journal of Acquired Immune Deficiency Syndrome, 45(1), 4–8.CrossRefGoogle Scholar
  79. Simon, S. L., Domier, C., Carnell, J., Brethen, P., Rawson, R., & Ling, W. (2000). Cognitive impairment in individuals currently using methamphetamine. American Journal on Addictions, 9(3), 222–231.PubMedCrossRefGoogle Scholar
  80. Smith, A. (1973). Symbol digit modalities test (SDMT). San Antonio: The Psych Corp.Google Scholar
  81. Smith, A. (2007). Symbol digit modalities test manual. Los Angeles, CA: Western Psychological Services.Google Scholar
  82. Sobell, L. C., & Sobell, M. B. (1996). Timeline follow back: A calendar method for assessing alcohol and drug use. Toronto, Canada: Addiction Research Foundation.Google Scholar
  83. Solomon, T. M., & Halkitis, P. N. (2008). Cognitive executive functioning in relation to HIV medication adherence among gay, bisexual, and other men who have sex with men. AIDS and Behavior, 12(1), 68–77.PubMedCrossRefGoogle Scholar
  84. Teichner, G., Horner, M. D., & Harvey, R. T. (2001). Neuropsychological predictors of the attainment of treatment objectives in substance abuse patients. International Journal of Neuroscience, 106(3/4), 253.PubMedCrossRefGoogle Scholar
  85. Toomey, R., Lyons, M. J., Eisen, S. A., Xian, H., Chantarujikapong, S., Seidman, L. J., et al. (2003). A twin study of the neuropsychological consequences of stimulant abuse. Archives of General Psychiatry, 60(3), 303–310.PubMedCrossRefGoogle Scholar
  86. Tozzi, V., Balestra, P., Bellagamba, R., Corpolongo, A., Salvatori, M. F., Visco-Comandini, U., et al. (2007). Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: Prevalence and risk factors. Journal of Acquired Immune Deficiency Syndrome, 45(2), 174–182.CrossRefGoogle Scholar
  87. Tucker, J. S., Orlando, M., Burnam, M. A., Sherbourne, C., Kung, F.-Y., & Gifford, A. L. (2004). Psychosocial mediators of antiretroviral nonadherence in HIV-positive adults with substance use and mental health problems. Health Psychology, 23(4), 363–370.PubMedCrossRefGoogle Scholar
  88. Verdejo-Garcia, A., & Perez-Garcia, M. (2007). Profile of executive deficits in cocaine and heroin polysubstance users: Common and differential effects on separate executive components. Psychopharmacology, 190(4), 517–530.PubMedCrossRefGoogle Scholar
  89. Volkow, N. D., Fowler, J. S., Wang, G. J., & Swanson, J. M. (2004). Dopamine in drug abuse and addiction: Results from imaging studies and treatment implications. Molecular Psychiatry, 9(6), 557–569.PubMedCrossRefGoogle Scholar
  90. Wagner, G. J. (2002). Predictors of antiretroviral adherence as measured by self-report, electronic monitoring, and medication diaries. AIDS Patient Care and STDS, 16(12), 599–608.PubMedCrossRefGoogle Scholar
  91. Waldrop-Valverde, D., Jones, D. L., Jayaweera, D., Gonzalez, P., Romero, J., & Ownby, R. L. (2009a). Gender differences in medication management capacity in HIV infection: The role of health literacy and numeracy. AIDS and Behavior, 13(1), 46–52.PubMedCrossRefGoogle Scholar
  92. Waldrop-Valverde, D., Osborn, C. Y., Rodriguez, A., Rothman, R. L., Kumar, M., & Jones, D. L. (2009). Numeracy skills explain racial differences in HIV medication management. AIDS and Behavior, Epub ahead of print (Aug 6), 1–7.Google Scholar
  93. Webber, M. P., Schoenbaum, E. E., Gourevitch, M. N., Buono, D., & Klein, R. S. (1999). A prospective study of HIV disease progression in female and male drug users. AIDS, 13(2), 257–262.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christina S. Meade
    • 1
    • 2
    • 3
    • 4
  • Nina A. Conn
    • 3
  • Linda M. Skalski
    • 2
  • Steven A. Safren
    • 4
    • 5
  1. 1.Department of Psychiatry & Behavioral SciencesDuke University School of MedicineDurhamUSA
  2. 2.Duke Global Health InstituteDurhamUSA
  3. 3.Behavioral Psychopharmacology Research LaboratoryMcLean HospitalBelmontUSA
  4. 4.Department of PsychiatryHarvard Medical SchoolBostonUSA
  5. 5.Behavioral Medicine ServiceMassachusetts General HospitalBostonUSA

Personalised recommendations