Investigating the Effects of a Fact Family Fluency Intervention on Math Facts Fluency and Quantitative Reasoning

Abstract

The current study investigates the effects of a fact family fluency intervention on math facts fluency and quantitative reasoning. Sixty-three students in Grades 5–8 participated in the study, including 14 students receiving special education services and 15 students receiving additional support. The researchers employed a quasi-experimental, switching replications design that included three waves of assessment. The first group to receive intervention achieved statistically significant gains in performance on both math facts fluency and quantitative reasoning. The second group then received intervention and demonstrated a similar performance. Implications of the current findings and potential directions for future research are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Adelman, C. (2006). The toolbox revisited: Paths to degree completion from high school through college. Washington, DC: U.S. Department of Education.

    Google Scholar 

  2. Alekseyenko, A. V. (2016). Multivariate Welch t-test on distances. Bioinformatics, 32, 3552–3558. https://doi.org/10.1093/bioinformatics/btw524.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Atkinson, R. D., & Mayo, M. (2011). Refueling the U.S. innovation economy: Fresh approaches to science, technology, engineering and mathematics (STEM) education (pp. 1–178). Washington, DC: The Information Technology and Innovation Foundation.

    Google Scholar 

  4. Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4, 829.

    PubMed  Article  PubMed Central  Google Scholar 

  5. Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29.

    PubMed  Article  Google Scholar 

  6. Bahrick, H. P., & Hall, L. K. (1991). Lifetime maintenance of high school mathematics content. Journal of Experimental Psychology: General, 120, 20.

    Article  Google Scholar 

  7. Baroody, A. (2006). Why children have difficulties mastering the basic number combinations and how to help them. Teaching Children Mathematics, 13, 22–31.

    Article  Google Scholar 

  8. Baroody, A. J., Torbeyns, J., & Verschaffel, L. (2009). Young children’s understanding and application of subtractionrelated principles: Introduction. Mathematical Thinking and Learning, 11, 2–9. https://doi.org/10.1080/10986060802583873.

    Article  Google Scholar 

  9. Beirne-Smith, M. (1991). Peer tutoring in arithmetic for children with learning disabilities. Exceptional Children, 57, 330–337.

    PubMed  Google Scholar 

  10. Biancarosa, G., & Shanley, L. (2016). What is fluency? The fluency construct (pp. 1–18). New York, NY: Springer.

    Google Scholar 

  11. Binder, C. (1996). Behavioral fluency: Evolution of a new paradigm. The Behavior Analyst, 19, 163–197.

    PubMed  PubMed Central  Article  Google Scholar 

  12. Boaler, J. (2015). Fluency without fear: Research evidence on the best ways to learn math facts. Retrieved from https://www.youcubed.org/.

  13. Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42, 189–201.

    PubMed  Article  PubMed Central  Google Scholar 

  14. Brady, K. K., & Kubina, R. M. (2010). Endurance of multiplication fact fluency for students with attention deficit hyperactivity disorder. Behavior Modification, 34, 79–93. https://doi.org/10.1177/0145445510361331.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bryant, D. P., Bryant, B. R., Gersten, R., Scammacca, N., & Chavez, M. M. (2008). Mathematics intervention for first- and second-grade students with mathematics difficulties: The effects of tier 2 intervention delivered as booster lessons. Remedial and Special Education, 29, 20–32. https://doi.org/10.1177/0741932507309712.

    Article  Google Scholar 

  16. Bullara, D. T., Kimball, J. W., & Cooper, J. O. (1993). An assessment of beginning addition skills following three months without instruction or practice. Journal of Precision Teaching, 11, 11–16.

    Google Scholar 

  17. Burnett, P. C. (2002). Teacher praise and feedback and students’ perceptions of the classroom environment. Educational psychology, 22, 5–16.

    Article  Google Scholar 

  18. Burns, M. K., Ysseldyke, J., Nelson, P. M., & Kanive, R. (2015). Number of repetitions required to retain single-digit multiplication math facts for elementary students. School Psychology Quarterly, 30, 398.

    PubMed  Article  PubMed Central  Google Scholar 

  19. Canobi, K. H. (2005). Children’s profiles of addition and subtraction understanding. Journal of Experimental Child Psychology, 92, 220–246. https://doi.org/10.1016/j.jecp.2005.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chiesa, M., & Robertson, A. (2000). Precision teaching and fluency training: Making maths easier for pupils and teachers. Educational Psychology in Practice, 16, 297–310. https://doi.org/10.1080/02667360020006372.

    Article  Google Scholar 

  21. Cirino, P. T., Tolar, T. D., Fuchs, L. S., & Huston-Warren, E. (2016). Cognitive and numerosity predictors of mathematical skills in middle school. Journal of Experimental Child Psychology, 145, 95–119.

    PubMed  Article  PubMed Central  Google Scholar 

  22. Clarke, B., Nelson, N., & Shanley, L. (2016). Mathematics fluency—More than the weekly timed test. In K. D. Cummings & Y. M. Petscher (Eds.), The fluency construct (pp. 67–89). New York, NY: Springer.

    Google Scholar 

  23. Codding, R. S., Burns, M. K., & Lukito, G. (2011). Meta-analysis of mathematic basic-fact fluency interventions: A component analysis. Learning Disabilities Research & Practice, 26, 36–47. https://doi.org/10.1111/j.1540-5826.2010.00323.x.

    Article  Google Scholar 

  24. Codding, R. S., Chan-Iannetta, L., Palmer, M., & Lukito, G. (2009). Examining a classwide application of cover–copy–compare with and without goal setting to enhance mathematics fluency. School Psychology Quarterly, 24, 173–185.

    Article  Google Scholar 

  25. Cohen, J. (1988). Statistical power for the behavioural sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  26. Cook, T. D., Campbell, D. T., & Shadish, W. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin.

    Google Scholar 

  27. Cook, B. G., & Cook, S. C. (2013). Unraveling evidence-based practices in special education. The Journal of Special Education, 47, 71–82. https://doi.org/10.1177/0022466911420877.

    Article  Google Scholar 

  28. Cooper, J. O., Heron, T. E., & Heward, W. L. (2007). Applied behavior analysis. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  29. Daly, E. J., III., Martens, B. K., Barnett, D., Witt, J. C., & Olson, S. C. (2007). Varying intervention delivery in response to intervention: Confronting and resolving challenges with measurement, instruction, and intensity. School Psychology Review, 36, 562–581.

    Article  Google Scholar 

  30. Donahoe, J. W., & Palmer, D. C. (2004). Learning and complex behavior. Boston: Allyn and Bacon.

    Google Scholar 

  31. Dowker, A. (2003). Young children’s estimates for addition: The zone of partial knowledge and understanding. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise (pp. 243–265). Mahwah, NJ: Erlbaum.

    Google Scholar 

  32. Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., & Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43, 1428–1446.

    PubMed  Article  PubMed Central  Google Scholar 

  33. Edmonds, W. A., & Kennedy, T. D. (2013). An applied reference guide to research designs. Los Angeles, CA: Sage.

    Google Scholar 

  34. Fuchs, L. S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J. D., & Hamlett, C. L. (2005). The prevention, identification, and cognitive determinants of math difficulty. Journal of Educational Psychology, 97, 493–513.

    Article  Google Scholar 

  35. Fuchs, L. S., Fuchs, D., Hamlet, C. L., Powell, S. R., Capizzi, A. M., & Seethaler, P. M. (2006). The effects of computer-assisted instruction on number combination skill in at-risk first graders. Journal of Learning Disabilities, 39, 467–475.

    PubMed  Article  Google Scholar 

  36. Fuchs, L. S., Fuchs, D., Stuebing, K., Fletcher, J. M., Hamlett, C. L., & Lambert, W. (2008a). Problem solving and computational skill: Are they shared or distinct aspects of mathematical cognition? Journal of Educational Psychology, 100, 30.

    PubMed  PubMed Central  Article  Google Scholar 

  37. Fuchs, L. S., & Fuchs, D. (2001). Principles for the prevention and intervention of mathematics difficulties. Learning Disabilities Research & Practice, 16, 85–95.

    Article  Google Scholar 

  38. Fuchs, L. S., Fuchs, D., & Malone, A. S. (2017). The taxonomy of intervention intensity. Teaching Exceptional Children, 50, 35–43.

    Article  Google Scholar 

  39. Fuchs, L. S., Seethaler, P. M., Powell, S. R., Fuchs, D., Hamlett, C. L., & Fletcher, J. M. (2008b). Effects of preventative tutoring on the mathematical problem solving of third- grade students with math and reading difficulties. Exceptional Children, 74, 155–173.

    PubMed  PubMed Central  Article  Google Scholar 

  40. Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22, 23–27. https://doi.org/10.1177/0963721412469398.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gersten, R., Beckmann, S., Clarke, B., Foegen, A., Marsh, L., Star, J. R., & Witzel, B. (2009). Assisting students struggling with mathematics: Response to Intervention (RtI) for elementary and middle schools (NCEE 2009–4060). Washington, DC: National Center for Education Evaluation and Regional Assistance, Institute of Education Sciences, U.S. Department of Education. Retrieved from http://ies.ed.gov/ncee/wwc/publications/practiceguides/.

  42. Gersten, R., Jordan, N. C., & Flojo, J. R. (2005). Early identification and intervention for students with mathematics difficulties. Journal of Learning Disabilities, 38, 293–304.

    PubMed  Article  Google Scholar 

  43. Gilmore, C. K., & Papadatou-Pastou, M. (2009). Patterns of individual differences in conceptual understanding and arithmetical skill: A meta-analysis. Mathematical Thinking and Learning, 11(1–2), 25–40.

    Article  Google Scholar 

  44. Greene, I., McTiernan, A. M., & Holloway, J. (2018). Cross-age peer tutoring and fluency-based instruction to achieve fluency with mathematics computation skills: A randomized controlled trial. Journal of Behavioral Education, 27(2), 145–171.

    Article  Google Scholar 

  45. Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77, 81–112.

    Article  Google Scholar 

  46. Hecht, S. A., Close, L., & Santisi, M. (2003). Sources of individual differences in fraction skills. Journal of Experimental Child Psychology, 86, 277–302.

    PubMed  Article  Google Scholar 

  47. Hoffer, T. B., Venkataraman, L., Hedberg, E. C., & Shagle, S. (2007). Final report on the national survey of algebra teachers for the National Math Panel. Chicago, IL: National Opinion Research Center at the University of Chicago.

    Google Scholar 

  48. Jan, S., & Shieh, G. (2014). Sample size determinations for Welch’s test in one-way heteroscedastic ANOVA. British Journal of Mathematical and Statistical Psychology, 67, 72–93. https://doi.org/10.1111/bmsp.12006.

    Article  Google Scholar 

  49. Johnson, K. (2008). Morningside mathematics fluency: Math facts (Vols. 1–6; curriculum program). Seattle, WA: Morningside Press.

    Google Scholar 

  50. Johnson, E. S., Carter, D. R., & Pool, J. L. (2012). Introduction to the special issue: The critical role of a strong tier 2 system. Intervention in School and Clinic, 48, 195–197. https://doi.org/10.1177/1053451212462877.

    Article  Google Scholar 

  51. Johnson, K. R., & Layng, T. J. (1996). On terms and procedures: Fluency. The Behavior Analyst, 19, 281–288.

    PubMed  PubMed Central  Article  Google Scholar 

  52. Johnston, J. M., & Pennypacker, H. S. (2009). Strategies and tactics of behavioral research (3rd ed.). New York, NY: Routledge.

    Google Scholar 

  53. Jordan, N. C., Glutting, J., & Ramineni, C. (2010). The importance of number sense to mathematics achievement in first and third grades. Learning and Individual Differences, 20, 82–88.

    PubMed  PubMed Central  Article  Google Scholar 

  54. Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). Arithmetic fact mastery in young children: A longitudinal investigation. Journal of Experimental Child Psychology, 85, 103–119.

    PubMed  PubMed Central  Article  Google Scholar 

  55. Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116, 45–58.

    PubMed  Article  PubMed Central  Google Scholar 

  56. Jordan, N. C., Kaplan, D., Nabors Oláh, L., & Locuniak, M. N. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77, 153–175.

    PubMed  Article  PubMed Central  Google Scholar 

  57. Kostewicz, D. E., King, S. A., Datchuk, S. M., Brennan, K. M., & Casey, S. D. (2016). Data collection and measurement assessment in behavioral research: 1958–2013. Behavior Analysis: Research and Practice, 16, 19–33.

    Google Scholar 

  58. Kubina, R. M., & Yurich, K. K. L. (2012). Precision teaching book. Lemont, PA: Greatness Achieved Publishing Company.

    Google Scholar 

  59. Lee, D. L. (2006). Facilitating academic transitions: An application of behavioral momentum. Remedial and Special Education, 27, 312–317.

    Article  Google Scholar 

  60. Lin, F. Y., & Kubina, R. M. (2005). A preliminary investigation of the relationship between fluency and application for multiplication. Journal of Behavioral Education, 14, 73–87.

    Article  Google Scholar 

  61. Long, A. C. J., Hagermoser Sanetti, L. M., Collier-Meek, M., Gallucci, J., Altschaefl, M., & Kratochwill, T. R. (2016). An exploratory investigation of teachers’ intervention planning and perceived implementation barriers. Journal of School Psychology, 55, 1–26.

    PubMed  Article  PubMed Central  Google Scholar 

  62. McTiernan, A., Holloway, J., Healy, O., & Hogan, M. (2016). A randomized controlled trial of the Morningside math facts curriculum on fluency, stability, endurance, and application outcomes. Journal of Behavioral Education, 25, 49–68. https://doi.org/10.1007/s10864-015-9227y.

    Article  Google Scholar 

  63. Meyers, L. S., Gamst, G., & Guarino, A. J. (2006). Applied multivariate research: Design and Interpretation. Thousand Oaks, CA: Sage.

    Google Scholar 

  64. National Assessment of Educational Progress. (2018). Mathematics assessment. Washington, DC: U.S. Department of Education, Institute of Education Sciences.

    Google Scholar 

  65. National Assessment of Educational Progress. (2015). Mathematics assessment. Washington, DC: U.S. Department of Education, Institute of Education Sciences.

    Google Scholar 

  66. National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  67. National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Washington, DC: U.S. Department of Education.

    Google Scholar 

  68. National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington, DC: Authors. Retrieved from http://www.corestandards.org/

  69. National Research Council & Mathematics Learning Study Committee. (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academies Press.

    Google Scholar 

  70. Phillips, G. W. (2007). Chance favors the prepared mind: Mathematics and science indicators for comparing states and nations. Washington, DC: American Institutes for Research.

    Google Scholar 

  71. Poncy, B. C., Skinner, C. H., & O’Mara, T. (2006). Detect, practice, and repair: The effects of a classwide intervention on elementary students’ math-fact fluency. Journal of Evidence-Based Practices for Schools, 7, 47–68.

    Google Scholar 

  72. Powell, S. R., & Fuchs, L. S. (2012). Early numerical competencies and students with mathematics difficulty. Focus on Exceptional Children, 44, 1–16.

    PubMed  PubMed Central  Article  Google Scholar 

  73. Price, G. R., & Ansari, D. (2013). Dyscalculia: Characteristics, causes, and treatments. Numeracy, 6(2), 1–16.

    Google Scholar 

  74. Rivera, D. M., & Bryant, B. R. (1992). Mathematics instruction for students with special needs. Intervention in School and Clinic, 28, 71–86. https://doi.org/10.1177/105345129202800203.

    Article  Google Scholar 

  75. Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student’s t-test and the Mann-Whitney U test. Behavioral Ecology, 17, 688–690.

    Article  Google Scholar 

  76. Schrank, F. A., Stephens-Pisecco, T. L., & Schultz, E. K. (2017). The WJ IV core selective evaluation process applied to identification of a specific learning disability (Woodcock-Johnson IV Assessment Service Bulletin No. 8). Itasca, IL: Houghton Mifflin Harcourt.

    Google Scholar 

  77. Sidman, M. (2000). Equivalence relations and the reinforcement contingency. Journal of the Experimental Analysis of Behavior, 74, 127–146.

    PubMed  PubMed Central  Article  Google Scholar 

  78. Siegler, R. S., & Shrager, J. (1984). A model of strategy choice. In C. Sophian (Ed.), Origin of cognitive skills (pp. 229–293). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  79. Schrank, F. A., Mather, N., & McGrew, K. S. (2014). Woodcock-Johnson IV tests of achievement. Rolling Meadows, IL: Riverside.

    Google Scholar 

  80. Skinner, C. H. (2010). Applied comparative effectiveness researchers must measure learning rates: A commentary on efficiency articles. Psychology in the Schools, 47, 166–172.

    Google Scholar 

  81. Stocker, J. D., & Kubina, R. M. (2017). Impact of cover, copy, and compare on fluency outcomes for students with disabilities and math deficits: A review of the literature. Preventing School Failure: Alternative Education for Children and Youth, 61(1), 56–68.

    Article  Google Scholar 

  82. Stocker, J. D., Jr., Kubina, R. M., Jr., Riccomini, P. J., & Mason, A. (2018a). Comparing the effects of different timings to build computational and procedural fluency with complex computations. Journal of Evidence Based Practices in Schools, 16, 206–219.

    Google Scholar 

  83. Stocker, J. D., Jr., Schwartz, R., Kubina, R. M., Jr., Kostewicz, D., & Kozloff, M. (2018b). Behavioral fluency and mathematics intervention research: A review of the last 20 years. Behavioral Interventions. https://doi.org/10.1002/bin.1649.

    Article  Google Scholar 

  84. Stromgren, B., Berg-Mortensen, C., & Tangen, L. (2014). The use of precision teaching to teach basic math facts. European Journal of Behavior Analysis, 15, 225–240.

    Article  Google Scholar 

  85. Sutherland, K. S., Alder, N., & Gunter, P. L. (2003). The effect of varying rates of opportunities to respond to academic requests on the classroom behavior of students with EBD. Journal of Emotional and Behavioral Disorders, 11, 239–248.

    Article  Google Scholar 

  86. Trochim, W. M. K., & Donnelly, J. P. (2008). Research methods knowledge base (3rd ed.). Mason, OH: Cengage.

    Google Scholar 

  87. U.S. Department of Education, National Center for Education Statistics. (2007). The Condition of Education 2007 (NCES 2007–064). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  88. Witzel, B. S., & Riccomini, P. J. (2007). Optimizing math curriculum to meet the learning needs of students. Preventing School Failure: Alternative Education for Children and Youth, 52, 13–18. https://doi.org/10.3200/PSFL.52.1.13-18.

    Article  Google Scholar 

  89. Woodward, J. (2006). Developing automaticity in multiplication facts: Integrating strategy instruction with timed practice drills. Learning Disability Quarterly, 29, 269–289.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James D. Stocker Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stocker, J.D., Hughes, E.M., Wiesner, A. et al. Investigating the Effects of a Fact Family Fluency Intervention on Math Facts Fluency and Quantitative Reasoning. J Behav Educ (2021). https://doi.org/10.1007/s10864-020-09422-1

Download citation

Keywords

  • Math facts fluency
  • Fact family fluency
  • Computation
  • Mathematics interventions
  • Quantitative reasoning
  • Number sense
  • Problem-solving