Changes in mitochondrial morphology modulate LPS-induced loss of calcium homeostasis in BV-2 microglial cells

Abstract

Microglial activation involves both fragmentation of the mitochondrial network and changes in cellular Ca2+ homeostasis, but possible modifications in mitochondrial calcium uptake have never been described in this context. Here we report that activated microglial BV-2 cells have impaired mitochondrial calcium uptake, including lower calcium retention capacity and calcium uptake rates. These changes were not dependent on altered expression of the mitochondrial calcium uniporter. Respiratory capacity and the inner membrane potential, key determinants of mitochondrial calcium uptake, are both decreased in activated microglial BV-2 cells. Modified mitochondrial calcium uptake correlates with impaired cellular calcium signaling, including reduced ER calcium stores, and decreased replenishment by store operated calcium entry (SOCE). Induction of mitochondrial fragmentation through Mfn2 knockdown in control cells mimicked this effect, while inhibiting LPS-induced mitochondrial fragmentation by a dominant negative form of Drp1 prevented it. Overall, our results show that mitochondrial fragmentation induced by LPS promotes altered Ca2+ homeostasis in microglial cells, a new aspect of microglial activation that could be a key feature in the inflammatory role of these cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Amigo I, Menezes-Filho SL, Luévano-Martínez LA, Chausse B, Kowaltowski AJ (2017) Caloric restriction increases brain mitochondrial calcium retention capacity and protects against excitotoxicity. Aging Cell 16:73–81. https://doi.org/10.1111/acel.12527

    CAS  Article  PubMed  Google Scholar 

  2. Akerman KE, Wikström MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68:191–197. https://doi.org/10.1016/0014-5793(76)80434-6

    CAS  Article  PubMed  Google Scholar 

  3. Allen NJ, Barres BA (2009) Glia - more than just brain glue. Nature 457:675–677. https://doi.org/10.1038/457675a

    CAS  Article  PubMed  Google Scholar 

  4. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345. https://doi.org/10.1038/nature10234

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Ben-Kasus Nissim T, Zhang X, Elazar A, Roy S, Stolwijk JA, Zhou Y, Motiani RK, Gueguinou M, Hempel N, Hershfinkel M, Gill DL, Trebak M, Sekler I (2017) Mitochondria control store-operated Ca2+ entry through Na+ and redox signals. EMBO J. 36:797–815. https://doi.org/10.15252/embj.201592481

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Boddeke EW, Meigel I, Frentzel S, Biber K, Renn LQ, Gebicke-Härter P (1999a) Functional expression of the fractalkine (CX3C) receptor and its regulation by lipopolysaccharide in rat microglia. Eur J Pharmacol 374:309–313. https://doi.org/10.1016/s0014-2999(99)00307-6

    CAS  Article  PubMed  Google Scholar 

  7. Boddeke EW, Meigel I, Frentzel S, Gourmala NG, Harrison JK, Buttini M, Spleiss O, Gebicke-Härter P (1999b) Cultured rat microglia express functional β-chemokine receptors. J Neuroimmunol 98:176–184. https://doi.org/10.1016/s0165-5728(99)00096-x

    CAS  Article  PubMed  Google Scholar 

  8. Castilho RF, Kowaltowski AJ, Meinicke AR, Bechara EJ, Vercesi AE (1995) Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. Free Radic Biol Med 18:479–486. https://doi.org/10.1016/0891-5849(94)00166-h

    CAS  Article  PubMed  Google Scholar 

  9. Chausse B, Kakimoto PA, Caldeira-da-Silva CC, Chaves-Filho AB, Yoshinaga MY, da Silva RP, Miyamoto S, Kowaltowski AJ (2019) Distinct metabolic patterns during microglial remodeling by oleate and palmitate. Biosci Rep 39:BSR20190072. https://doi.org/10.1042/BSR20190072

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. De Simone R, Niturad CE, De Nuccio C, Ajmone-Cat MA, Visentin S, Minghetti L (2010) TGF-β and LPS modulate ADP-induced migration of microglial cells through P2Y1 and P2Y12 receptor expression. J Neurochem 115:450–459. https://doi.org/10.1111/j.1471-4159.2010.06937.x

    CAS  Article  PubMed  Google Scholar 

  11. De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A 40 kDa protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340. https://doi.org/10.1038/nature10230

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197. https://doi.org/10.2174/092986707780597961

    CAS  Article  PubMed  Google Scholar 

  13. Engelhardt B, Sorokin L (2009) The blood-brain and the blood-cerebrospinal fluid barriers: function and dysfunction. Semin Immunopathol 31:497–511. https://doi.org/10.1007/s00281-009-0177-0

    Article  PubMed  Google Scholar 

  14. Fiskum G, Craig SW, Decker GL, Lehninger AL (1980) The cytoskeleton of digitonin-treated rat hepatocytes. Proc Natl Acad Sci U S A 77:3430–3434. https://doi.org/10.1073/pnas.77.6.3430

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Fiskum G, Kowaltowksi AJ, Andreyev AY, Kushnareva YE, Starkov AA (2000) Apoptosis-related activities measured with isolated mitochondria and digitonin-permeabilized cells. Methods Enzymol 322:222–234. https://doi.org/10.1016/s0076-6879(00)22023-5

    CAS  Article  PubMed  Google Scholar 

  16. Forni MF, Peloggia J, Trudeau K, Shirihai O, Kowaltowski AJ (2016) Murine mesenchymal stem cell commitment to differentiation is regulated by mitochondrial dynamics. Stem Cells 34:743–755. https://doi.org/10.1002/stem.2248

    CAS  Article  PubMed  Google Scholar 

  17. Gao Z, Li Y, Wang F, Huang T, Fan K, Zhang Y, Zhong J, Cao Q, Chao T, Jia J, Yang S, Zhang L, Xiao Y, Zhou JY, Feng XH, Jin J (2017) Mitochondrial dynamics controls anti-tumour innate immunity by regulating CHIP-IRF1 axis stability. Nat Commun 8:1805. https://doi.org/10.1038/s41467-017-01919-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  Article  Google Scholar 

  19. Guevara I, Iwanejko J, Dembińska-Kieć A, Pankiewicz J, Wanat A, Anna P, Gołabek I, Bartuś S, Malczewska-Malec M, Szczudlik A (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 274:177–188. https://doi.org/10.1016/s0009-8981(98)00060-6

    CAS  Article  PubMed  Google Scholar 

  20. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. https://doi.org/10.1038/nn1997

    CAS  Article  PubMed  Google Scholar 

  21. Heo DK, Lim HM, Nam JH, Lee MG, Kim JY (2015) Regulation of phagocytosis and cytokine secretion by store-operated calcium entry in primary isolated murine microglia. Cell Signal 27:177–186. https://doi.org/10.1016/j.cellsig.2014.11.003

    CAS  Article  PubMed  Google Scholar 

  22. Hines DJ, Hines RM, Mulligan SJ, Macvicar BA (2009) Microglia processes block the spread of damage in the brain and require functional chloride channels. Glia. 57:1610–1618. https://doi.org/10.1002/glia.20874

    Article  PubMed  Google Scholar 

  23. Hoffmann A, Kann O, Ohlemeyer C, Hanisch UK, Kettenmann H (2003) Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function. J Neurosci 23:4410–4419. https://doi.org/10.1523/JNEUROSCI.23-11-04410.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Katoh M, Wu B, Nguyen HB, Thai TQ, Yamasaki R, Lu H, Rietsch AM, Zorlu MM, Shinozaki Y, Saitoh Y, Saitoh S, Sakoh T, Ikenaka K, Koizumi S, Ransohoff RM, Ohno N (2017) Polymorphic regulation of mitochondrial fission and fusion modifies phenotypes of microglia in neuroinflammation. Sci Rep 7:4942. https://doi.org/10.1038/s41598-017-05232-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Kowaltowski AJ, Cosso RG, Campos CB, Fiskum G (2002) Effect of Bcl-2 overexpression on mitochondrial structure and function. J Biol Chem 277:42802–42807. https://doi.org/10.1074/jbc.M207765200

    CAS  Article  PubMed  Google Scholar 

  26. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47:333–343. https://doi.org/10.1016/j.freeradbiomed.2009.05.004

    CAS  Article  PubMed  Google Scholar 

  27. Kowaltowski AJ, Menezes-Filho SL, Assali EA, Gonçalves IG, Cabral-Costa JV, Abreu P, Miller N, Nolasco P, Laurindo FRM, Bruni-Cardoso A, Shirihai OS (2019) Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J 33:13176–13188. https://doi.org/10.1096/fj.201901136R

    CAS  Article  PubMed  Google Scholar 

  28. Lytton J, Westlin M, Hanley MR (1991) Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum ca-ATPase family of calcium pumps. J Biol Chem 266:17067–17071

    CAS  Article  Google Scholar 

  29. Menezes-Filho SL, Amigo I, Prado FM, Ferreira NC, Koike MK, Pinto IFD, Miyamoto S, Montero EFS, Medeiros MHG, Kowaltowski AJ (2017) Caloric restriction protects livers from ischemia/reperfusion damage by preventing Ca2+-induced mitochondrial permeability transition. Free Radic Biol Med 110:219–227. https://doi.org/10.1016/j.freeradbiomed.2017.06.013

    CAS  Article  PubMed  Google Scholar 

  30. Mo Y, Deng S, Zhang L, Huang Y, Li W, Peng Q, Liu Z, Ai Y (2019) SS-31 reduces inflammation and oxidative stress through the inhibition of Fis1 expression in lipopolysaccharide-stimulated microglia. Biochem Biophys Res Commun 520:171–178. https://doi.org/10.1016/j.bbrc.2019.09.077

    CAS  Article  PubMed  Google Scholar 

  31. Möller T (2002) Calcium signaling in microglial cells. Glia 40:184–194. https://doi.org/10.1002/glia.10152

    Article  PubMed  Google Scholar 

  32. Mustaly-Kalimi S, Littlefield AM, Stutzmann GE (2018) Calcium signaling deficits in glia and autophagic pathways contributing to neurodegenerative disease. Antioxid Redox Signal 29:1158–1175. https://doi.org/10.1089/ars.2017.7266

    CAS  Article  PubMed  Google Scholar 

  33. Nair S, Sobotka KS, Joshi P, Gressens P, Fleiss B, Thornton C, Mallard C, Hagberg H (2019) Lipopolysaccharide-induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia. 67:1047–1061. https://doi.org/10.1002/glia.23587

    Article  PubMed  Google Scholar 

  34. O’Neill LAJ, Pearce EJ (2016) Immunometabolism governs dendritic cell and macrophage function. J Exp Med 213:15–23. https://doi.org/10.1084/jem.20151570

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173:649–665. https://doi.org/10.1111/bph.13139

    CAS  Article  PubMed  Google Scholar 

  36. Park J, Choi H, Kim B, Chae U, Lee DG, Lee SR, Lee S, Lee HS, Lee DS (2016) Peroxiredoxin 5 (Prx5) decreases LPS-induced microglial activation through regulation of Ca2+/calcineurin-Drp1-dependent mitochondrial fission. Free Radic Biol Med 99:392–404. https://doi.org/10.1016/j.freeradbiomed.2016.08.030

    CAS  Article  PubMed  Google Scholar 

  37. Park J, Choi H, Min JS, Park SJ, Kim JH, Park HJ, Kim B, Chae JI, Yim M, Lee DS (2013) Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 127:221–232. https://doi.org/10.1111/jnc.12361

    CAS  Article  PubMed  Google Scholar 

  38. Pernas L, Scorrano L (2016) Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol 78:505–531. https://doi.org/10.1146/annurev-physiol-021115-105011

    CAS  Article  PubMed  Google Scholar 

  39. Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578. https://doi.org/10.1038/nrm3412

    CAS  Article  PubMed  Google Scholar 

  40. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766. https://doi.org/10.1126/science.280.5370.1763

    CAS  Article  PubMed  Google Scholar 

  41. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23:1018–1027. https://doi.org/10.1038/nm.4397

    CAS  Article  PubMed  Google Scholar 

  42. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    CAS  Article  PubMed  Google Scholar 

  43. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Suzuki T, Hide I, Matsubara A, Hama C, Harada K, Miyano K, Andrä M, Matsubayashi H, Sakai N, Kohsaka S, Inoue K, Nakata Y (2006) Microglial α7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. J Neurosci Res 83:1461–1470. https://doi.org/10.1002/jnr.20850

    CAS  Article  PubMed  Google Scholar 

  45. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16:59–68. https://doi.org/10.1016/j.molcel.2004.09.026

    CAS  Article  PubMed  Google Scholar 

  46. Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HCF, de Souza-Pinto NC, Figueira TR, Busanello ENB (2018) Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radic Biol Med 129:1–24. https://doi.org/10.1016/j.freeradbiomed.2018.08.034

    CAS  Article  PubMed  Google Scholar 

  47. Wang Y, Subramanian M, Yurdagul A Jr, Barbosa-Lorenzi VC, Cai B, de Juan-Sanz J, Ryan TA, Nomura M, Maxfield FR, Tabas I (2017) Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell 171:331–345. https://doi.org/10.1016/j.cell.2017.08.041

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Xie N, Wu C, Wang C, Cheng X, Zhang L, Zhang H, Lian Y (2017) Inhibition of the mitochondrial calcium uniporter inhibits Aβ-induced apoptosis by reducing reactive oxygen species-mediated endoplasmic reticulum stress in cultured microglia. Brain Res 1676:100–106. https://doi.org/10.1016/j.brainres.2017.08.035

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Sirlei Mendes de Oliveira and Camille Caldeira da Silva (Universidade de São Paulo) for their outstanding technical support. The graphical abstract was created from adapted figures and templates available at Servier Medical Art by Servier (https://smart.servier.com) under a Creative Commons Attribution 3.0 Unported License.

Funding

This work was funded by grants #2020/06970–5 and #2013/07937–8 from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Centro de Pesquisa, Inovação e Difusão de Processos Redox em Biomedicina (CEPID Redoxoma), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). O.R.P.Jr. is supported by FAPESP grant #2018/21487–9. V.M.R. is supported by FAPESP grant #2019/18402–4. J.V.C.-C. is supported by FAPESP grants #2017/14713–0 and #2019/22178–2.

Author information

Affiliations

Authors

Contributions

O.R.P.Jr., J.V.C.-C., and A.J.K designed the experiments; O.R.P.Jr., V.M.R., and J.V.C.-C. acquired and analyzed the data; O.R.P.Jr., J.V.C.-C., and A.J.K wrote the manuscript. All authors revised and approved the manuscript.

Corresponding authors

Correspondence to J. V. Cabral-Costa or A. J. Kowaltowski.

Ethics declarations

Conflicts of interest/competing interests

The authors declare no conflicts of interest.

Availability of data and material (data transparency)

Raw data are fully available upon request.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.60 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pereira, O.R., Ramos, V.M., Cabral-Costa, J.V. et al. Changes in mitochondrial morphology modulate LPS-induced loss of calcium homeostasis in BV-2 microglial cells. J Bioenerg Biomembr (2021). https://doi.org/10.1007/s10863-021-09878-4

Download citation

Keywords

  • Calcium handling
  • Mitochondrial morphology
  • Metabolism
  • Inflammation