Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 50, Issue 2, pp 131–142 | Cite as

Skeletal muscle overexpression of short isoform Sirt3 altered mitochondrial cardiolipin content and fatty acid composition

  • Béatrice Chabi
  • Gilles Fouret
  • Jérome Lecomte
  • Fabienne Cortade
  • Laurence Pessemesse
  • Narjès Baati
  • Charles Coudray
  • Ligen Lin
  • Qiang Tong
  • Chantal Wrutniak-Cabello
  • François Casas
  • Christine Feillet-Coudray
Article

Abstract

Cardiolipin (CL) is a phospholipid at the heart of mitochondrial metabolism, which plays a key role in mitochondrial function and bioenergetics. Among mitochondrial activity regulators, SIRT3 plays a crucial role in controlling the acetylation status of many enzymes participating in the energy metabolism in particular concerning lipid metabolism and fatty acid oxidation. Data suggest that possible connection may exist between SIRT3 and CL status that has not been evaluated in skeletal muscle. In the present study, we have characterized skeletal muscle lipids as well as mitochondrial lipids composition in mice overexpressing long (SIRT3-M1) and short (SIRT3-M3) isoforms of SIRT3. Particular attention has been paid for CL. We reported no alteration in muscle lipids content and fatty acids composition between the two mice SIRT3 strains and the control mice. However, mitochondrial CL content was significantly decreased in SIRT3-M3 mice and associated to an upregulation of tafazzin gene expression. In addition, mitochondrial phospholipids and fatty acids composition was altered with an increase in the PC/PE ratio and arachidonic acid content and a reduction in the MUFA/SFA ratio. These modifications in mitochondrial membrane composition are associated with a reduction in the enzymatic activities of mitochondrial respiratory chain complexes I and IV. In spite of these mitochondrial enzymatic alterations, skeletal muscle mitochondrial respiration remained similar in SIRT3-M3 and control mice. Surprisingly, none of those metabolic alterations were detected in mitochondria from SIRT3-M1 mice. In conclusion, our data indicate a specific action of the shorter SIRT3 isoform on lipid mitochondrial membrane biosynthesis and functioning.

Keywords

Sirt3 isoforms Mitochondria Cardiolipin Phospholipids Skeletal muscle 

Notes

Acknowledgments

The authors would like to thank Béatrice Bonafos, Corentin Affortit, Agathe Lecaplain and Nicolas Leroy for technical assistance during this study. The authors wish also to thank the animal staff from Metamus DMEM facility which belongs to Montpellier animal facilities network (RAM, Biocampus).

Supplementary material

10863_2018_9752_MOESM1_ESM.doc (216 kb)
ESM 1 (DOC 215 kb)

References

  1. Aoun M, Feillet-Coudray C, Fouret G, Chabi B, Crouzier D, Ferreri C, Chatgilialoglu C, Wrutniak-Cabello C, Cristol JP, Carbonneau MA, Coudray C (2011) Rat liver mitochondrial membrane characteristics and mitochondrial functions are more profoundly altered by dietary lipid quantity than by dietary lipid quality: effect of different nutritional lipid patterns. Br J Nutr 107:647–659CrossRefGoogle Scholar
  2. Aoun M, Fouret G, Michel F, Bonafos B, Ramos J, Cristol JP, Carbonneau MA, Coudray C, Feillet-Coudray C (2012) Dietary fatty acids modulate liver mitochondrial cardiolipin content and its fatty acid composition in rats with non alcoholic fatty liver disease. J Bioenerg Biomembr 44:439–452CrossRefGoogle Scholar
  3. Bao J, Lu Z, Joseph JJ, Carabenciov D, Dimond CC, Pang L, Samsel L, McCoy JP Jr, Leclerc J, Nguyen P, Gius D, Sack MN (2010) Characterization of the murine SIRT3 mitochondrial localization sequence and comparison of mitochondrial enrichment and deacetylase activity of long and short SIRT3 isoforms. J Cell Biochem 110:238–247Google Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  5. Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q, Dolinsky VW (2015) Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem 290:10981–10993CrossRefGoogle Scholar
  6. Chicco AJ, Sparagna GC (2007) Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol 292:C33–C44CrossRefGoogle Scholar
  7. Cooper HM, Spelbrink JN (2008) The human SIRT3 protein deacetylase is exclusively mitochondrial. Biochem J 411:279–285CrossRefGoogle Scholar
  8. Cooper HM, Huang JY, Verdin E, Spelbrink JN (2009) A new splice variant of the mouse SIRT3 gene encodes the mitochondrial precursor protein. PLoS One 4:e4986CrossRefGoogle Scholar
  9. Eble KS, Coleman WB, Hantgan RR, Cunningham CC (1990) Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 265:19434–19440Google Scholar
  10. Fajardo VA, McMeekin L, LeBlanc PJ (2011) Influence of phospholipid species on membrane fluidity: a meta-analysis for a novel phospholipid fluidity index. J Membr Biol 244:97–103CrossRefGoogle Scholar
  11. Feillet-Coudray C, Fouret G, Casas F, Coudray C (2014) Impact of high dietary lipid intake and related metabolic disorders on the abundance and acyl composition of the unique mitochondrial phospholipid, cardiolipin. J Bioenerg Biomembr 46:447–457CrossRefGoogle Scholar
  12. Flowers MT (2009) The delta9 fatty acid desaturation index as a predictor of metabolic disease. Clin Chem 55:2071–2073CrossRefGoogle Scholar
  13. Fouret G, Tolika E, Lecomte J, Bonafos B, Aoun M, Murphy MP, Ferreri C, Chatgilialoglu C, Dubreucq E, Coudray C, Feillet-Coudray C (2015a) The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats. Biochim Biophys Acta 1847:1025–1035CrossRefGoogle Scholar
  14. Fouret, G., E. Tolika, J. Lecomte, B. Bonafos, M. Aoun, M.P. Murphy, C. Ferreri, C. Chatgilialoglu, E. Dubreucq, C. Coudray, and C. Feillet-Coudray. 2015b. The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats. Biochim Biophys Acta Google Scholar
  15. Gohil VM, Hayes P, Matsuyama S, Schagger H, Schlame M, Greenberg ML (2004) Cardiolipin biosynthesis and mitochondrial respiratory chain function are interdependent. J Biol Chem 279:42612–42618CrossRefGoogle Scholar
  16. Hallows WC, Lee S, Denu JM (2006) Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci U S A 103:10230–10235CrossRefGoogle Scholar
  17. Han X, Yang J, Yang K, Zhao Z, Abendschein DR, Gross RW (2007) Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry 46:6417–6428CrossRefGoogle Scholar
  18. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, Li Y, Saha AK, Ruderman NB, Bain JR, Newgard CB, Farese RV Jr, Alt FW, Kahn CR, Verdin E (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464:121–125CrossRefGoogle Scholar
  19. Holloway GP, Fajardo VA, McMeekin L, LeBlanc PJ (2012) Unsaturation of mitochondrial membrane lipids is related to palmitate oxidation in subsarcolemmal and intermyofibrillar mitochondria. J Membr Biol 245:165–176CrossRefGoogle Scholar
  20. Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65:2493–2506CrossRefGoogle Scholar
  21. Jin L, Galonek H, Israelian K, Choy W, Morrison M, Xia Y, Wang X, Xu Y, Yang Y, Smith JJ, Hoffmann E, Carney DP, Perni RB, Jirousek MR, Bemis JE, Milne JC, Sinclair DA, Westphal CH (2009) Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3. Protein Sci 18:514–525CrossRefGoogle Scholar
  22. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Abdulkadir SA, Spitz DR, Deng CX, Gius D (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17:41–52CrossRefGoogle Scholar
  23. Kumar S, Lombard DB (2015) Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal 22:1060–1077CrossRefGoogle Scholar
  24. Kunau WH, Dommes V, Schulz H (1995) Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: a century of continued progress. Prog Lipid Res 34:267–342CrossRefGoogle Scholar
  25. Lanza IR, Nair KS (2009) Functional assessment of isolated mitochondria in vitro. Methods Enzymol 457:349–372CrossRefGoogle Scholar
  26. Lin L, Chen K, Abdel Khalek W, Ward JL, Yang H 3rd, Chabi B, Wrutniak-Cabello C, Tong Q (2014) Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3. PLoS One 9:e85636CrossRefGoogle Scholar
  27. Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV Jr, Weissman S, Verdin E, Schwer B (2007) Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol Cell Biol 27:8807–8814CrossRefGoogle Scholar
  28. Ntambi JM (1999) Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 40:1549–1558Google Scholar
  29. Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A 99:11482–11486CrossRefGoogle Scholar
  30. Ostojic, O., M.F. O'Leary, K. Singh, K.J. Menzies, A. Vainshtein, and D.A. Hood. 2013. The effects of chronic muscle use and disuse on cardiolipin metabolism. J Appl Physiol (1985) 114:444–452Google Scholar
  31. Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward JL, Goodyear LJ 3rd, Tong Q (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging (Albany NY) 1:771–783CrossRefGoogle Scholar
  32. Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2010) Oxidative stress, mitochondrial bioenergetics, and cardiolipin in aging. Free Radic Biol Med 48:1286–1295CrossRefGoogle Scholar
  33. Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837:408–417CrossRefGoogle Scholar
  34. Peyta L, Jarnouen K, Pinault M, Guimaraes C, Pais de Barros JP, Chevalier S, Dumas JF, Maillot F, Hatch GM, Loyer P, Servais S (2016) Reduced cardiolipin content decreases respiratory chain capacities and increases ATP synthesis yield in the human HepaRG cells. Biochim Biophys Acta 1857:443–453CrossRefGoogle Scholar
  35. Portero-Otin M, Bellmunt MJ, Ruiz MC, Barja G, Pamplona R (2001) Correlation of fatty acid unsaturation of the major liver mitochondrial phospholipid classes in mammals to their maximum life span potential. Lipids 36:491–498CrossRefGoogle Scholar
  36. Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci U S A 110:6601–6606CrossRefGoogle Scholar
  37. Sack MN (2012) The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging. J Mol Cell Cardiol 52:520–525CrossRefGoogle Scholar
  38. Schlame M, Hostetler KY (1997) Cardiolipin synthase from mammalian mitochondria. Biochim Biophys Acta 1348:207–213CrossRefGoogle Scholar
  39. Schlame M, Ren M (2009) The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim Biophys Acta 1788:2080–2083CrossRefGoogle Scholar
  40. Schwall CT, Greenwood VL, Alder NN (2012) The stability and activity of respiratory complex II is cardiolipin-dependent. Biochim Biophys Acta 1817:1588–1596CrossRefGoogle Scholar
  41. Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci U S A 103:10224–10229CrossRefGoogle Scholar
  42. Sentex E, Sergiel JP, Lucien A, Grynberg A (1997) Trimetazidine increases phospholipid turnover in ventricular myocyte. Mol Cell Biochem 175:153–162CrossRefGoogle Scholar
  43. Shabalina IG, Hoeks J, Kramarova TV, Schrauwen P, Cannon B, Nedergaard J (2010) Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects. Biochim Biophys Acta 1797:968–980CrossRefGoogle Scholar
  44. Shi T, Wang F, Stieren E, Tong Q (2005) SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chem 280:13560–13567CrossRefGoogle Scholar
  45. Srere P (1969) Citrate synthase. Methods Enzymol 13:3–11CrossRefGoogle Scholar
  46. Tabbi-Anneni I, Helies-Toussaint C, Morin D, Bescond-Jacquet A, Lucien A, Grynberg A (2003a) Prevention of heart failure in rats by trimetazidine treatment: a consequence of accelerated phospholipid turnover? J Pharmacol Exp Ther 304:1003–1009CrossRefGoogle Scholar
  47. Tabbi-Anneni I, Lucien A, Grynberg A (2003b) Trimetazidine effect on phospholipid synthesis in ventricular myocytes: consequences in alpha-adrenergic signaling. Fundam Clin Pharmacol 17:51–59CrossRefGoogle Scholar
  48. Taylor WA, Mejia EM, Mitchell RW, Choy PC, Sparagna GC, Hatch GM (2012) Human trifunctional protein alpha links cardiolipin remodeling to beta-oxidation. PLoS One 7:e48628CrossRefGoogle Scholar
  49. Unsay JD, Cosentino K, Subburaj Y, Garcia-Saez AJ (2013) Cardiolipin effects on membrane structure and dynamics. Langmuir 29:15878–15887CrossRefGoogle Scholar
  50. Walle P, Takkunen M, Mannisto V, Vaittinen M, Lankinen M, Karja V, Kakela P, Agren J, Tiainen M, Schwab U, Kuusisto J, Laakso M, Pihlajamaki J (2016) Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity. Metabolism 65:655–666CrossRefGoogle Scholar
  51. Warensjo E, Riserus U, Gustafsson IB, Mohsen R, Cederholm T, Vessby B (2008) Effects of saturated and unsaturated fatty acids on estimated desaturase activities during a controlled dietary intervention. Nutr Metab Cardiovasc Dis 18:683–690CrossRefGoogle Scholar
  52. Weijers RN (2012) Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr Diabetes Rev 8:390–400CrossRefGoogle Scholar
  53. Yang Y, Hubbard BP, Sinclair DA, Tong Q (2010) Characterization of murine SIRT3 transcript variants and corresponding protein products. J Cell Biochem 111:1051–1058CrossRefGoogle Scholar
  54. Yang X, Sheng W, Sun GY, Lee JC (2011) Effects of fatty acid unsaturation numbers on membrane fluidity and alpha-secretase-dependent amyloid precursor protein processing. Neurochem Int 58:321–329CrossRefGoogle Scholar
  55. Zhang Y, Bharathi SS, Rardin MJ, Uppala R, Verdin E, Gibson BW, Goetzman ES (2015) SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase. PLoS One 10:e0122297CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Béatrice Chabi
    • 1
  • Gilles Fouret
    • 1
  • Jérome Lecomte
    • 2
  • Fabienne Cortade
    • 1
  • Laurence Pessemesse
    • 1
  • Narjès Baati
    • 1
  • Charles Coudray
    • 1
  • Ligen Lin
    • 3
    • 4
  • Qiang Tong
    • 3
  • Chantal Wrutniak-Cabello
    • 1
  • François Casas
    • 1
  • Christine Feillet-Coudray
    • 1
  1. 1.DMEM, INRA, Université de MontpellierMontpellierFrance
  2. 2.CIRAD/SupAgro, UMR IATEMontpellierFrance
  3. 3.USDA/ARS Children’s Nutrition Research Center, Department of PediatricsBaylor College of MedicineHoustonUSA
  4. 4.State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of MacauMacauChina

Personalised recommendations